1
|
Varcoe RL, Parikh SA, DeRubertis BG, Jones-McMeans JM, Teraphongphom NT, Wang J, Kolluri R, Weinberg I, Holden AH, Garcia-Garcia HM, Kum SW, Bonaca MP, Bajakian DR, Garcia LA, Krishnan P, Armstrong E, Shishehbor MH, Rundback J, Metzger DC. Evaluation of an Infrapopliteal Drug-Eluting Resorbable Scaffold: Design Methodology for the LIFE-BTK Randomized Controlled Trial. JOURNAL OF THE SOCIETY FOR CARDIOVASCULAR ANGIOGRAPHY & INTERVENTIONS 2023; 2:100964. [PMID: 39131658 PMCID: PMC11307544 DOI: 10.1016/j.jscai.2023.100964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 08/13/2024]
Abstract
Background Critical limb-threatening ischemia (CLTI) is a severe condition characterized by rest pain and ischemic tissue loss that affects 5% to 10% of people with peripheral artery disease. In the United States, there are few Food and Drug Administration-approved devices for the primary treatment of arteries below-the-knee (BTK). Unfortunately, all suffer from high restenosis rates due to intimal hyperplasia, elastic recoil, and untreated dissection because of a lack of scaffolding. The Esprit BTK system is a resorbable, drug-eluting scaffold device with the potential to address an unmet need in people suffering from CLTI because of infrapopliteal atherosclerosis. The LIFE-BTK (pivotaL Investigation of saFety and Efficacy of drug-eluting resorbable scaffold treatment-Below The Knee) randomized controlled trial (RCT) is a prospectively designed premarket evaluation of the Esprit BTK drug-eluting resorbable scaffold used in the treatment of those patients. Methods The LIFE-BTK trial enrolled 261 subjects with CLTI for the RCT and a further 7 subjects for a pharmacokinetic substudy. The objective of the RCT was to evaluate the safety and efficacy of the Esprit BTK scaffold compared to percutaneous transluminal angioplasty. The primary efficacy end point was a composite of limb salvage and primary patency at 12 months. The primary safety end point is freedom from major adverse limb events and peri-operative death at 6 months and 30 days, respectively. Clinical follow-up care is planned for 5 years. Conclusions Novel devices must be tested in RCTs to evaluate their safety and efficacy compared to the standard of care if we are to improve outcomes for this challenging group of patients.
Collapse
Affiliation(s)
- Ramon L. Varcoe
- The Prince of Wales Hospital, University of New South Wales, Randwick, New South Wales, Australia
| | - Sahil A. Parikh
- Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | | | | | | | - Jin Wang
- Abbott Vascular, Santa Clara, California
| | | | | | - Andrew H. Holden
- Auckland Hospital, University of Auckland, Grafton, Auckland, New Zealand
| | | | | | - Marc P. Bonaca
- Cardiovascular Division, CPC Clinical Research, University of Colorado School of Medicine, Aurora, Colorado
| | - Danielle R. Bajakian
- Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - Lawrence A. Garcia
- Vascular Care Group, Tufts University School of Medicine, Boston, Massachusetts
| | | | | | - Mehdi H. Shishehbor
- University Hospitals Harrington Heart and Vascular Institute, Cleveland, Ohio
| | - John Rundback
- Advanced Interventional and Vascular Services LLP, Teaneck, New Jersey
| | | |
Collapse
|