1
|
Mallik S, Bandyopadhyay S. WeCoMXP: Weighted Connectivity Measure Integrating Co-Methylation, Co-Expression and Protein-Protein Interactions for Gene-Module Detection. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020; 17:690-703. [PMID: 30183644 DOI: 10.1109/tcbb.2018.2868348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The identification of modules (groups of several tightly interconnected genes) in gene interaction network is an essential task for better understanding of the architecture of the whole network. In this article, we develop a novel weighted connectivity measure integrating co-methylation, co-expression, and protein-protein interactions (called WeCoMXP) to detect gene-modules for multi-omics dataset. The proposed measure goes beyond the fundamental degree centrality measure through considering some formulation of higher-order connections. Thereafter, we apply the average linkage clustering method using the corresponding dissimilarity (distance) values of WeCoMXP scores, and utilize a dynamic tree cut method for identifying some gene-modules. We validate the modules through literature search, KEGG pathway, and gene-ontology analyses on the genes representing the modules. Furthermore, the top 10 TFs/miRNAs that are connected with the maximum number of gene-modules and that regulate/target the maximum number of genes from these connected gene-modules, are identified. Moreover, our proposed method provides a better performance than the existing methods in terms of several cluster-validity indices in maximum times.
Collapse
|
2
|
Liao Y, Feng Y, Shen J, Hornicek FJ, Duan Z. The roles and therapeutic potential of cyclin-dependent kinases (CDKs) in sarcoma. Cancer Metastasis Rev 2017; 35:151-63. [PMID: 26669603 DOI: 10.1007/s10555-015-9601-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Uncontrolled proliferation and cell growth is the hallmark of many different malignant diseases, including sarcomas. Cyclin-dependent kinases (CDKs) are members of the serine/threonine protein kinase family and play crucial roles in tumor cell proliferation and growth by controlling cell cycle, transcription, and RNA splicing. In addition, several CDKs influence multiple targets and phosphorylate transcription factors involved in tumorigenesis. There are many examples linking dysregulated activation and expression of CDKs to tumors, and targeting CDKs in tumor cells has become a promising therapeutic strategy. More recently, the Food and Drug Administration (FDA) has approved the CDK4/6 inhibitor palbociclib for treating metastatic breast cancer. In sarcomas, high levels of CDK mRNA and protein expression have been found in most human sarcoma cells and patient tissues. Many studies have demonstrated consistent results in which inhibition of different CDKs decrease sarcoma cell growth and induce apoptosis. Therefore, CDKs comprise an attractive set of targets for novel anti-sarcoma drug development. In this review, we discuss the roles of different members of CDKs in various sarcomas and provide a pre-clinical overview of promising therapeutic potentials of targeting CDKs with a special emphasis on sarcoma.
Collapse
Affiliation(s)
- Yunfei Liao
- Department of Orthopaedic Surgery, Sarcoma Biology Laboratory, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA, 02114, USA.,Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jie Fang Avenue, Wuhan, China, 430022
| | - Yong Feng
- Department of Orthopaedic Surgery, Sarcoma Biology Laboratory, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA, 02114, USA.,Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jie Fang Avenue, Wuhan, China, 430022
| | - Jacson Shen
- Department of Orthopaedic Surgery, Sarcoma Biology Laboratory, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA, 02114, USA
| | - Francis J Hornicek
- Department of Orthopaedic Surgery, Sarcoma Biology Laboratory, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA, 02114, USA
| | - Zhenfeng Duan
- Department of Orthopaedic Surgery, Sarcoma Biology Laboratory, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA, 02114, USA.
| |
Collapse
|
3
|
de Sá Rodrigues LC, Holmes KE, Thompson V, Newton MA, Stein TJ. Tumourigenic canine osteosarcoma cell lines associated with frizzled-6 up-regulation and enhanced side population cell frequency. Vet Comp Oncol 2015; 15:78-93. [PMID: 25689105 DOI: 10.1111/vco.12138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 12/04/2014] [Accepted: 12/10/2014] [Indexed: 01/20/2023]
Abstract
An increased serum alkaline phosphatase concentration is known to be associated with a negative prognosis in canine and human osteosarcoma. To expand upon previous studies regarding the biological relevance of increased serum alkaline phosphatase as a negative prognostic factor, xenogeneic heterotopic transplants were performed using six canine primary osteosarcoma cell lines generated from patients with differing serum alkaline phosphatase concentrations (three normal and three increased). Three of the six cell lines were capable of generating tumours and tumour formation was independent of the serum alkaline phosphatase status of the cell line. Microarray analysis identified 379 genes as being differentially expressed between the tumourigenic and non-tumourigenic cell lines. Frizzled-6 was upregulated to the greatest extent (7.78-fold) in tumourigenic cell lines compared with non-tumourigenic cell lines. Frizzled-6, a co-receptor for Wnt ligands has been associated with enhanced tumour-initiating cells and poor prognosis for other tumours. The increased expression of frizzled-6 was confirmed by quantitative reverse transcription polymerase chain reaction (QPCR) and Western blot analysis. Additionally, the tumourigenic cell lines also had an increase in the percentage of side population cells compared with non-tumourigenic cell lines (5.89% versus 1.58%, respectively). There were no differences in tumourigenicity, frizzled-6 or percentage of side population cells noted between osteosarcoma cell lines generated from patients of differing serum alkaline phosphatase concentration. However, to our knowledge this is the first study to identified frizzled-6 as a possible marker of osteosarcoma cell populations with enhanced tumourigenicity and side population cells. Future work will focus on defining the role of frizzled-6 in osteosarcoma tumourigenesis and tumour-initiating cells.
Collapse
Affiliation(s)
- L C de Sá Rodrigues
- Department of Medical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - K E Holmes
- Department of Medical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - V Thompson
- Department of Medical Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - M A Newton
- Departments of Statistics and of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA.,Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - T J Stein
- Department of Medical Sciences, University of Wisconsin-Madison, Madison, WI, USA.,Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI, USA.,Institute for Clinical & Translational Research, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
4
|
Bonelli P, Tuccillo FM, Borrelli A, Schiattarella A, Buonaguro FM. CDK/CCN and CDKI alterations for cancer prognosis and therapeutic predictivity. BIOMED RESEARCH INTERNATIONAL 2014; 2014:361020. [PMID: 24605326 PMCID: PMC3925518 DOI: 10.1155/2014/361020] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 12/04/2013] [Indexed: 12/20/2022]
Abstract
The regulation of cell growth and division occurs in an accurate sequential manner. It is dictated by the accumulation of cyclins (CCNs) and cyclin-dependent kinases (CDKs) complexes and degradation of CCNs. In human tumors, instead, the cell cycle is deregulated, causing absence of differentiation and aberrant cell growth. Oncogenic alterations of CCNs, CDKs, and CDKIs have been reported in more than 90% of human cancers, and the most frequent are those related to the G1 phase. Several molecular mechanisms, including gene overexpression, chromosomal translocations, point mutations, insertions and deletions, missense and frame shift mutation, splicing, or methylation, may be responsible for these alterations. The cell cycle regulators are involved in tumor progression given their association with cancers characterized by higher incidence of relapses and chemotherapy resistance. In the last decade anticancer drug researches focused on new compounds, able to target molecules related to changes in genes associated with tumor status. Recently, the studies have focused on the restoration of cell cycle control modulating molecular targets involved in cancer-cell alterations. This paper aims to correlate alterations of cell cycle regulators with human cancers and therapeutic responsivity.
Collapse
Affiliation(s)
- Patrizia Bonelli
- Molecular Biology and Viral Oncology Unit, Department of Research, Istituto Nazionale Tumori-IRCCS Fondazione “G. Pascale”, 80131 Naples, Italy
| | - Franca Maria Tuccillo
- Molecular Biology and Viral Oncology Unit, Department of Research, Istituto Nazionale Tumori-IRCCS Fondazione “G. Pascale”, 80131 Naples, Italy
| | - Antonella Borrelli
- Molecular Biology and Viral Oncology Unit, Department of Research, Istituto Nazionale Tumori-IRCCS Fondazione “G. Pascale”, 80131 Naples, Italy
| | - Antonietta Schiattarella
- Molecular Biology and Viral Oncology Unit, Department of Research, Istituto Nazionale Tumori-IRCCS Fondazione “G. Pascale”, 80131 Naples, Italy
| | - Franco Maria Buonaguro
- Molecular Biology and Viral Oncology Unit, Department of Research, Istituto Nazionale Tumori-IRCCS Fondazione “G. Pascale”, 80131 Naples, Italy
| |
Collapse
|
5
|
Piskun CM, Stein TJ. β-Catenin transcriptional activity is minimal in canine osteosarcoma and its targeted inhibition results in minimal changes to cell line behaviour. Vet Comp Oncol 2013; 14:e4-e16. [PMID: 24256430 DOI: 10.1111/vco.12077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/11/2013] [Accepted: 10/20/2013] [Indexed: 12/21/2022]
Abstract
Canine osteosarcoma (OS) is an aggressive malignancy associated with poor outcomes. Therapeutic improvements are likely to develop from an improved understanding of signalling pathways contributing to OS development and progression. The Wnt signalling pathway is of interest for its role in osteoblast differentiation, its dysregulation in numerous cancer types, and the relative frequency of cytoplasmic accumulation of β-catenin in canine OS. This study aimed to determine the biological impact of inhibiting canonical Wnt signalling in canine OS, by utilizing either β-catenin siRNA or a dominant-negative T-cell factor (TCF) construct. There were no consistent, significant changes in cell line behaviour with either method compared to parental cell lines. Interestingly, β-catenin transcriptional activity was three-fold higher in normal canine primary osteoblasts compared to canine OS cell lines. These results suggest canonical Wnt signalling is minimally active in canine OS and its targeted inhibition is not a relevant therapeutic strategy.
Collapse
Affiliation(s)
- Caroline M Piskun
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Timothy J Stein
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Institute for Clinical & Translational Research, University of Wisconsin-Madison, Madison, WI, USA.,Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
6
|
Histologic and genetic advances in refining the diagnosis of "undifferentiated pleomorphic sarcoma". Cancers (Basel) 2013; 5:218-33. [PMID: 24216705 PMCID: PMC3730306 DOI: 10.3390/cancers5010218] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/26/2013] [Accepted: 02/17/2013] [Indexed: 12/20/2022] Open
Abstract
Undifferentiated pleomorphic sarcoma (UPS) is an inclusive term used for sarcomas that defy formal sub-classification. The frequency with which this diagnosis is assigned has decreased in the last twenty years. This is because when implemented, careful histologic assessment, immunohistochemistry, and ultra-structural evaluation can often determine lineage of differentiation. Further attrition in the diagnostic frequency of UPS may arise by using array-comparative genomic hybridization. Gene expression arrays are also of potential use as they permit hierarchical gene clustering. Appraisal of the literature is difficult due to a historical perspective in which specific molecular diagnostic methods were previously unavailable. The American Joint Committee on Cancer (AJCC) classification has changed with different inclusion criteria. Taxonomy challenges also exist with the older term “malignant fibrous histiocytoma” being replaced by “UPS”. In 2010 an analysis of multiple sarcoma expression databases using a 170-gene predictor, re-classified most MFH and “not-otherwise-specified” (NOS) tumors as liposarcomas, leiomyosarcomas or fibrosarcomas. Interestingly, some of the classifier genes are potential molecular therapeutic targets including Insulin-like growth factor 1 (IGF-1), Peroxisome proliferator-activated receptor γ (PPARγ), Nerve growth factor β (NGF β) and Fibroblast growth factor receptor (FGFR).
Collapse
|