1
|
Nasra S, Bhatia D, Kumar A. Recent advances in nanoparticle-based drug delivery systems for rheumatoid arthritis treatment. NANOSCALE ADVANCES 2022; 4:3479-3494. [PMID: 36134349 PMCID: PMC9400644 DOI: 10.1039/d2na00229a] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/19/2022] [Indexed: 05/28/2023]
Abstract
Nanotechnology has increasingly emerged as a promising tool for exploring new approaches, from treating complex conditions to early detection of the onset of multiple disease states. Tailored designer nanoparticles can now more comprehensively interact with their cellular targets and various pathogens due to a similar size range and tunable surface properties. The basic goal of drug delivery is to employ pharmaceuticals only where they are needed, with as few adverse effects and off-target consequences as possible. Rheumatoid arthritis (RA) is a chronic inflammatory illness that leads to progressive loss of bone and cartilage, resulting in acute impairment, decreased life expectancy, and increased death rates. Recent advancements in treatment have significantly slowed the progression of the disease and improved the lives of many RA sufferers. Some patients, on the other hand, attain or maintain illness remission without needing to continue immunosuppressive therapy. Furthermore, a large percentage of patients do not respond to current treatments or acquire tolerance to them. As a result, novel medication options for RA therapy are still needed. Nanocarriers, unlike standard medications, are fabricated to transport drugs directly to the location of joint inflammation, evading systemic and negative effects. As a result, researchers are reconsidering medicines that were previously thought to be too hazardous for systemic delivery. This article gives an overview of contemporary nanotechnology-based tactics for treating rheumatoid arthritis, as well as how the nanotherapeutic regimen could be enhanced in the future.
Collapse
Affiliation(s)
- Simran Nasra
- Biological & Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus Navrangpura Ahmedabad Gujarat India +91796191127
| | - Dhiraj Bhatia
- Biological Engineering Discipline, Indian Institute of Technology, IIT Gandhinagar Palaj 382355 Gujarat India
| | - Ashutosh Kumar
- Biological & Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus Navrangpura Ahmedabad Gujarat India +91796191127
| |
Collapse
|
2
|
Movaffagh J, Hadizadeh F, Khodaverdi E, Khalili B, Rezaeian Shiadeh SN, Kamali H, Oroojalian F. Preparation and in vitro evaluation of injectable formulations of levothyroxine sodium using in situ forming hydrogel temperature-responsive systems based on PLA-PEG-PLA and PLGA-PEG-PLGA triblock copolymers. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:341-351. [PMID: 35656181 PMCID: PMC9148395 DOI: 10.22038/ijbms.2022.62576.13842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/23/2022] [Indexed: 12/01/2022]
Abstract
OBJECTIVES Recently, great attention has been paid to developing new drug delivery systems to manage the rate, time, and site of drug release. We aimed to design a novel drug delivery system to support targeted and gradual delivery of levothyroxine sodium. MATERIALS AND METHODS The triblock copolymers of PLA-PEG-PLA and PLGA-PEG-PLGA were constructed using the ring-opening copolymerization method and then purified and characterized by 1H-NMR, DSC, and GPC techniques. The phase transition temperature of the polymers was determined, and levothyroxine sodium stability was investigated in a phosphate-based buffer (pH 7.4). In vitro drug release into the PBS was measured at different concentrations of the triblocks for one month. RESULTS The results of NMR and GPC showed successful fabrication of the copolymers with low molecular weight dispersion and Tg points of -8.19 °C and -5.19 °C for PLA-PEG-PLA and PLGA-PEG-PLGA, respectively. Stability tests showed that during one month, most of the triblocks' masses degraded at 37 °C while levothyroxine sodium remained stable. Initial burst release of the drug in both copolymers is inversely correlated with the concentration of the polymer. Evaluation of drug release for 35 days showed that PLA-PEG-PLA had a slower drug release rate than PLGA-PEG-PLGA. CONCLUSION Considering the low initial burst release, as well as continuous and long-term release kinetics of PLA-PEG-PLA and PLGA-PEG-PLGA copolymers, they can be used to gradually deliver levothyroxine sodium, obviating the need for frequent administrations and concerns over drug-food interactions.
Collapse
Affiliation(s)
- Jebraeil Movaffagh
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran,Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran , These authors contributed equally to this work
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran, These authors contributed equally to this work
| | - Elham Khodaverdi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran,Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahnaz Khalili
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hossein Kamali
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran,Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran ,Corresponding authors: Hossein Kamali. Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. Tel/ Fax: +98-5131801302; ; Fatemeh Oroojlaian. Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran. Tel: +98-5832297095; Fax: +98-5832297182;
| | - Fatemeh Oroojalian
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran,Corresponding authors: Hossein Kamali. Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. Tel/ Fax: +98-5131801302; ; Fatemeh Oroojlaian. Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran. Tel: +98-5832297095; Fax: +98-5832297182;
| |
Collapse
|
3
|
Jahani M, Fazly Bazzaz BS, Akaberi M, Rajabi O, Hadizadeh F. Recent Progresses in Analytical Perspectives of Degradation Studies and Impurity Profiling in Pharmaceutical Developments: An Updated Review. Crit Rev Anal Chem 2022; 53:1094-1115. [PMID: 35108132 DOI: 10.1080/10408347.2021.2008226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Forced degradation studies have been used to simplify analytical methodology development and achieve a deeper knowledge about the inherent stability of active pharmaceutical ingredients (API) and drug products. This provides insight into degradation species and pathways. Identification of impurities in pharmaceutical products is closely related to the selection of the most appropriate analytical methods like HPLC-UV, LC-MS/MS, LC-NMR, GC-MS, and capillary electrophoresis. Herein, recent trends in analytical perspectives during 2018-April 14, 2021, are discussed based on forced and impurity degradation profiling of pharmaceuticals. Literature review showed that several methods have been used for experimental design and analysis conditions such as matrix type, column type, mobile phase, elution modes, detection wavelengths, and therapeutic category. Thus, since these factors influence the separation and identification of the impurities and degradation products, we attempted to perform a statistical analysis for the developed methods according to the abovementioned factors.
Collapse
Affiliation(s)
- Maryam Jahani
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Akaberi
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Omid Rajabi
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Okur NÜ, Yağcılar AP, Siafaka PI. Promising Polymeric Drug Carriers for Local Delivery: The Case of in situ Gels. Curr Drug Deliv 2021; 17:675-693. [PMID: 32510291 DOI: 10.2174/1567201817666200608145748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/28/2020] [Accepted: 04/18/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND At present, the controlled local drug delivery is a very promising approach compared to systemic administration, since it mostly targets the affected tissue. In fact, various drug carriers for local delivery have been prepared with improved therapeutic efficacy. OBJECTIVE in situ polymer gels are drug delivery systems that not only present liquid characteristics before their administration in body, but once they are administered, form gels due to gelation. Their gelation mechanism is due to factors such as pH alteration, temperature change, ion activation or ultraviolet irradiation. in situ gels offer various advantages compared to conventional formulations due to their ability to release drugs in a sustainable and controllable manner. Most importantly, in situ gels can be used in local drug delivery applications for various diseases. METHODS This review includes the basic knowledge and theory of in situ gels as well as their various applications according to their administration route. RESULTS Various natural, semisynthetic, and synthetic polymers can produce in situ polymeric gels. For example, natural polysaccharides such as alginic acid, chitosan, gellan gum, carrageenan etc. have been utilized as in situ gels for topical delivery. Besides the polysaccharides, poloxamers, poly(Nisopropylacrylamide), poly(ethyleneoxide)/ (lactic-co-glycolic acid), and thermosensitive liposome systems can be applied as in situ gels. In most cases, in situ polymeric gels could be applied via various administration routes such as oral, vaginal, ocular, intranasal and injectable. CONCLUSION To conclude, it can be revealed that in situ gels could be a promising alternative carrier for both chronic and immediate diseases.
Collapse
Affiliation(s)
- Neslihan Üstündağ Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Ayşe Pınar Yağcılar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Panoraia I Siafaka
- Faculty of Sciences, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
5
|
Khodaverdi E, Delroba K, Mohammadpour F, Khameneh B, Sajadi Tabassi SA, Tafaghodi M, Kamali H, Hadizadeh F. In-vitro Release Evaluation of Growth Hormone from an Injectable In-Situ Forming Gel Using PCL-PEG-PCL Thermosensitive Triblock. Curr Drug Deliv 2020; 17:174-183. [PMID: 31987020 DOI: 10.2174/1567201817666200120120105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 10/02/2019] [Accepted: 12/31/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE An injectable long acting In-Situ Forming Gel (ISFG) of human Growth Hormone (hGH) was prepared by using triblock PCL-PEG-PCL (Mw 1500-1500-1500). Ring-Opening Polymerization (ROP) of triblock using microwave was applied. METHODS The BCA protein assay Kit was used to determine the concentration of hGH in the in-vitro release medium. Finally, Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) tests and Circular Dichroism (CD) spectrum were done to approve the stability of released hGH. The result of ROP demonstrated that the proportion of PCL to PEG accorded with the initial molar ratio of the monomers. The cross-section of the Surface Electron Microscopy (SEM) indicated the porous framework of the hydrogel could load the drug into its tridimensional matrixes structure. There is the low initial burst release of hGH from the supramolecular hydrogel. RESULTS The maximum in-vitro release of hGH was 71.2 % ± 1.5 that were due to hGH degrading after this time (21 days). The CD spectrum and SDS-PAGE results confirmed the stability of hGH during invitro release evaluation. CONCLUSION The results suggest that the sustained-release formulation using PCL-PEG-PCL can be applied to control the release of hGH.
Collapse
Affiliation(s)
- Elham Khodaverdi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khadijeh Delroba
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mohammadpour
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahman Khameneh
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sayyed A Sajadi Tabassi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Tafaghodi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Kamali
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Zhang LY, Bi Q, Zhao C, Chen JY, Cai MH, Chen XY. Recent Advances in Biomaterials for the Treatment of Bone Defects. Organogenesis 2020; 16:113-125. [PMID: 32799735 DOI: 10.1080/15476278.2020.1808428] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bone defects or fractures generally heal in the absence of major interventions due to the high regenerative capacity of bone tissue. However, in situations of severe/large bone defects, these orchestrated regeneration mechanisms are impaired. With advances in modern medicine, natural and synthetic bio-scaffolds from bioceramics and polymers that support bone growth have emerged and gained intense research interest. In particular, scaffolds that recapitulate the molecular cues of extracellular signals, particularly growth factors, offer potential as therapeutic bone biomaterials. The current challenges for these therapies include the ability to engineer materials that mimic the biological and mechanical properties of the real bone tissue matrix, whilst simultaneously supporting bone vascularization. In this review, we discuss the very recent innovative strategies in bone biomaterial technology, including those of endogenous biomaterials and cell/drug delivery systems that promote bone regeneration. We present our understanding of their current value and efficacy, and the future perspectives for bone regenerative medicine.
Collapse
Affiliation(s)
- Le-Yi Zhang
- Department of General Surgery, Chun'an First People's Hospital (Zhejiang Provincial People's Hospital Chun'an Branch) , Hangzhou, Zhejiang Province, China
| | - Qing Bi
- Department of Orthopedics, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) , Hangzhou, China
| | - Chen Zhao
- Department of Orthopedics, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) , Hangzhou, China
| | - Jin-Yang Chen
- Research and Development Department, Zhejiang Healthfuture Institute for Cell-Based Applied Technology , Hangzhou, Zhejiang Province, China
| | - Mao-Hua Cai
- Department of General Surgery, Chun'an First People's Hospital (Zhejiang Provincial People's Hospital Chun'an Branch) , Hangzhou, Zhejiang Province, China
| | - Xiao-Yi Chen
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) , Hangzhou, China.,Clinical Research Institute, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) , Hangzhou, China
| |
Collapse
|
7
|
Abou-ElNour M, Soliman ME, Skouras A, Casettari L, Geneidi AS, Ishak RAH. Microparticles-in-Thermoresponsive/Bioadhesive Hydrogels as a Novel Integrated Platform for Effective Intra-articular Delivery of Triamcinolone Acetonide. Mol Pharm 2020; 17:1963-1978. [PMID: 32271590 DOI: 10.1021/acs.molpharmaceut.0c00126] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Intra-articular (IA) injection of thermoresponsive hydrogels coupled with microparticles (MPs) possess the benefit of sustaining the anti-inflammatory drug effect within the joint cavity for rheumatoid arthritis treatment. Star-shaped thermoresponsive poly(polyethylene glycol) methacrylate [Poly(PEGMA)] copolymers were synthesized using free radical polymerization technique and fully characterized. Triamcinolone acetonide (TA)-loaded PLA/mPEG-PDL MPs, previously optimized, were integrated into the synthesized copolymer solutions at various concentrations and tested for their gelation temperatures. The MPs-in-hydrogel formulations were characterized using scanning electron microscope (SEM), viscosity measurements, ex vivo bioadhesion, and in vitro release studies. The anti-inflammatory effect of integrated systems was assessed in adjuvant-induced monoarthritic rat knee joints and compared to Kenacort and TA-loaded MPs. Two copolymers were successfully synthesized; G-1 = poly(PEGMA188-ME-co-PEGMA475-ME) and G-2 = poly(PEGMA246-EE-co-PEGMA475-ME). Using the tube inversion technique, the gel formation was found dependent on copolymer concentration. An irreversible aggregation was obtained at copolymer concentrations ≤10% (w/v), while a gel was formed at 20 and 30% (w/v) of both copolymers upon increasing temperature. The MP-hydrogel formulations were optimized at 20 and 30% (w/v) of G-1 and G-2 with gelation temperatures of 33 and 37 °C, respectively. SEM images revealed the porous microstructures of hydrogels and their adsorption on MP surfaces. The integrated formulas showed pseudoplastic behaviors, while the bioadhesion study confirmed their bioadhesiveness on excised cartilage. The in vitro release study confirmed drug sustainment from MPs-hydrogels compared to MPs. In vivo studies proved the superiority of MP-in-hydrogels in treatment of induced arthritis, relative to Kenacort and MPs alone, suggesting the applicability of this integrated platform in IA drug delivery.
Collapse
Affiliation(s)
- May Abou-ElNour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Monazzamet Elwehda Elafrikeya Street, Abbaseyya, Cairo 11566, Egypt
| | - Mahmoud E Soliman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Monazzamet Elwehda Elafrikeya Street, Abbaseyya, Cairo 11566, Egypt
| | - Athanasios Skouras
- Department of Life Sciences, School of Sciences, European University Cyprus, 1516 Nicosia, Cyprus
| | - Luca Casettari
- Department of Biomolecular Sciences, School of Pharmacy, University of Urbino, Piazza Rinascimento, 6, 61029 Urbino, Pesaro and Urbino, Italy
| | - Ahmed S Geneidi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Monazzamet Elwehda Elafrikeya Street, Abbaseyya, Cairo 11566, Egypt
| | - Rania A H Ishak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Monazzamet Elwehda Elafrikeya Street, Abbaseyya, Cairo 11566, Egypt
| |
Collapse
|
8
|
Tran TQM, Hsieh MF, Chang KL, Pho QH, Nguyen VC, Cheng CY, Huang CM. Bactericidal Effect of Lauric Acid-Loaded PCL-PEG-PCL Nano-Sized Micelles on Skin Commensal Propionibacterium acnes. Polymers (Basel) 2016; 8:polym8090321. [PMID: 30974595 PMCID: PMC6431869 DOI: 10.3390/polym8090321] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 08/14/2016] [Accepted: 08/22/2016] [Indexed: 12/31/2022] Open
Abstract
Acne is the over growth of the commensal bacteria Propionibacterium acnes (P. acnes) on human skin. Lauric acid (LA) has been investigated as an effective candidate to suppress the activity of P. acnes. Although LA is nearly insoluble in water, dimethyl sulfoxide (DMSO) has been reported to effectively solubilize LA. However, the toxicity of DMSO can limit the use of LA on the skin. In this study, LA-loaded poly(ɛ-caprolactone)-poly(ethylene glycol)-poly(ɛ-caprolactone) micelles (PCL-PEG-PCL) were developed to improve the bactericidal effect of free LA on P. acnes. The block copolymers mPEG-PCL and PCL-PEG-PCL with different molecular weights were synthesized and characterized using ¹H Nuclear Magnetic Resonance spectroscopy (¹H NMR), Fourier-transform infrared spectroscopy (FT-IR), Gel Permeation Chromatography (GPC), and Differential Scanning Calorimetry (DSC). In the presence of LA, mPEG-PCL diblock copolymers did not self-assemble into nano-sized micelles. On the contrary, the average particle sizes of the PCL-PEG-PCL micelles ranged from 50⁻198 nm for blank micelles and 27⁻89 nm for LA-loaded micelles. The drug loading content increased as the molecular weight of PCL-PEG-PCL polymer increased. Additionally, the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of free LA were 20 and 80 μg/mL, respectively. The MICs and MBCs of the micelles decreased to 10 and 40 μg/mL, respectively. This study demonstrated that the LA-loaded micelles are a potential treatment for acne.
Collapse
Affiliation(s)
- Thi-Quynh-Mai Tran
- International Master Program of Biomedical Material and Technology, Chung Yuan Christian University, 200 Chung-Pei Road, Chung Li District, Taoyuan City 32023, Taiwan.
- Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung-Pei Road, Chung Li District, Taoyuan City 32023, Taiwan.
| | - Ming-Fa Hsieh
- International Master Program of Biomedical Material and Technology, Chung Yuan Christian University, 200 Chung-Pei Road, Chung Li District, Taoyuan City 32023, Taiwan.
- Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung-Pei Road, Chung Li District, Taoyuan City 32023, Taiwan.
- Center for Biomedical Technology, Chung Yuan Christian University, 200 Chung-Pei Road, Chung Li District, Taoyuan City 32023, Taiwan.
| | - Keng-Lun Chang
- Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung-Pei Road, Chung Li District, Taoyuan City 32023, Taiwan.
| | - Quoc-Hue Pho
- Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung-Pei Road, Chung Li District, Taoyuan City 32023, Taiwan.
| | - Van-Cuong Nguyen
- Department of Chemical Engineering, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao St., Go Vap, Ho Chi Minh City 7000, Vietnam.
| | - Ching-Yi Cheng
- Graduate Institute of Health Industry Technology and Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, No. 261, Wenhua 1st Road, Guishan District, Taoyuan City 33303, Taiwan.
| | - Chun-Ming Huang
- Department of Dermatology, School of Medicine, University of California, San Diego, CA 92121, USA.
| |
Collapse
|
9
|
Khodaverdi E, Tekie FSM, Hadizadeh F, Esmaeel H, Mohajeri SA, Tabassi SAS, Zohuri G. Hydrogels composed of cyclodextrin inclusion complexes with PLGA-PEG-PLGA triblock copolymers as drug delivery systems. AAPS PharmSciTech 2014; 15:177-188. [PMID: 24234803 DOI: 10.1208/s12249-013-0051-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/22/2013] [Indexed: 12/12/2022] Open
Abstract
Although conventional pharmaceuticals have many drug dosage forms on the market, the development of new therapeutic molecules and the low efficacy of instant release formulations for the treatment of some chronic diseases and specific conditions encourage scientists to invent different delivery systems. To this purpose, a supramolecular hydrogel consisting of the tri-block copolymer PLGA-PEGPLGA and α-cyclodextrin was fabricated for the first time and characterised in terms of rheological, morphological, and structural properties. Naltrexone hydrochloride and vitamin B12 were loaded, and their release profiles were determined.
Collapse
|
10
|
Preparation of a sustained release drug delivery system for dexamethasone by a thermosensitive, in situ forming hydrogel for use in differentiation of dental pulp. ISRN PHARMACEUTICS 2013; 2013:983053. [PMID: 24369509 PMCID: PMC3863485 DOI: 10.1155/2013/983053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/28/2013] [Indexed: 12/27/2022]
Abstract
In situ forming delivery systems composed of block copolymers are attracting substantial attention due to their ease of use, biocompatibility, and biodegradability. In this study, the thermoresponsive triblock copolymer PLGA-PEG-PLGA was studied as a dexamethasone delivery system. Dexamethasone, a synthetic glucocorticoid, is used clinically to improve inflammation, pain, and the hyperemesis of chemotherapy, and it is applied experimentally as a differentiation factor in tissue engineering. PLGA-PEG-PLGA was synthesised under microwave irradiation for 5 min. The obtained copolymer was characterised to determine its structure and phase transition temperature. An in vitro release study was conducted for various copolymer structures and drug concentrations. The yield of the reaction and HNMR analysis confirmed the appropriateness of the microwave-assisted method for PLGA-PEG-PLGA synthesis. Phase transition temperature was affected by the drug molecule as well as by the copolymer concentration and structure. An in vitro release study demonstrated that release occurs mainly by diffusion and does not depend on the copolymer structure or dexamethasone concentration.
Collapse
|