1
|
Nishiwaki T, Ikedo T, Kushi Y, Shimonaga K, Kobayashi H, Itazu T, Otsuka R, Tega J, Hamano E, Imamura H, Mori H, Nakamura M, Kato T, Shirakami S, Iihara K, Iwama T, Kataoka H. Hemodynamic differences determining rupture and non-rupture in middle cerebral aneurysms after growth. PLoS One 2024; 19:e0307495. [PMID: 39172939 PMCID: PMC11340937 DOI: 10.1371/journal.pone.0307495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/05/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND AND PURPOSE Intracranial aneurysm growth is a significant risk factor for rupture; however, a few aneurysms remain unruptured for long periods, even after growth. Here, we identified hemodynamic features associated with aneurysmal rupture after growth. MATERIALS AND METHODS We analyzed nine middle cerebral artery aneurysms that grew during the follow-up period using computational fluid dynamics analysis. Growth patterns of the middle cerebral artery aneurysms were divided into homothetic growth (Type 1), de novo bleb formation (Type 2), and bleb enlargement (Type 3). Hemodynamic parameters of the four ruptured aneurysms after growth were compared with those of the five unruptured aneurysms. RESULTS Among nine aneurysms (78%), seven were Type 1, one was Type 2, and one was Type 3. Three (43%) Type 1 aneurysms ruptured after growth. Maximum oscillatory shear index after aneurysmal growth was significantly higher in ruptured Type 1 cases than in unruptured Type 1 cases (ruptured vs. unruptured: 0.455 ± 0.007 vs. 0.319 ± 0.042, p = 0.003). In Type 1 cases, a newly emerged high-oscillatory shear index area was frequently associated with rupture, indicating a rupture point. Aneurysm growth was observed in the direction of the high-pressure difference area before enlargement. In Types 2 and 3 aneurysms, the maximum oscillatory shear index decreased slightly, however, the pressure difference values remain unchanged. In Type 3 aneruysm, the maximum OSI and PD values remained unchanged. CONCLUSIONS This study suggests that hemodynamic variations and growth pattern changes are crucial in rupture risk determination using computational fluid dynamics analysis. High-pressure difference areas may predict aneurysm enlargement direction. Additionally, high maximum oscillatory shear index values after enlargement in cases with homothetic growth patterns were potential rupture risk factors.
Collapse
Affiliation(s)
- Takayuki Nishiwaki
- Department of Neurosurgery, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
- Department of Neurosurgery, Daiyukai Hospital, Ichinomiya, Aichi, Japan
- Department of Neurosurgery, Gifu University School of Medicine, Gifu, Gifu, Japan
| | - Taichi Ikedo
- Department of Neurosurgery, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
- Department of Neurosurgery, Kyoto University, Kyoto, Kyoto, Japan
| | - Yuji Kushi
- Department of Neurosurgery, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Koji Shimonaga
- Department of Neurosurgery, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Hiroki Kobayashi
- Department of Neurosurgery, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Takaaki Itazu
- Department of Neurosurgery, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Ryotaro Otsuka
- Department of Neurosurgery, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
- Department of Neurosurgery, Kyoto University, Kyoto, Kyoto, Japan
| | - Jota Tega
- Department of Neurosurgery, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Eika Hamano
- Department of Neurosurgery, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Hirotoshi Imamura
- Department of Neurosurgery, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Hisae Mori
- Department of Neurosurgery, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Masanori Nakamura
- Department of Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Nagoya, Japan
| | - Takayuki Kato
- Department of Neurosurgery, Daiyukai Hospital, Ichinomiya, Aichi, Japan
| | | | - Koji Iihara
- Department of Neurosurgery, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Toru Iwama
- Department of Neurosurgery, Gifu University School of Medicine, Gifu, Gifu, Japan
| | - Hiroharu Kataoka
- Department of Neurosurgery, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| |
Collapse
|
2
|
Oliveira IL, Cardiff P, Baccin CE, Gasche JL. A numerical investigation of the mechanics of intracranial aneurysms walls: Assessing the influence of tissue hyperelastic laws and heterogeneous properties on the stress and stretch fields. J Mech Behav Biomed Mater 2022; 136:105498. [PMID: 36257146 DOI: 10.1016/j.jmbbm.2022.105498] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/14/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
Numerical simulations have been extensively used in the past two decades for the study of intracranial aneurysms (IAs), a dangerous disease that occurs in the arteries that reach the brain and affect overall 3.2% of a population without comorbidity with up to 60% mortality rate, in case of rupture. The majority of those studies, though, assumed a rigid-wall model to simulate the blood flow. However, to also study the mechanics of IAs walls, it is important to assume a fluid-solid interaction (FSI) modeling. Progress towards more reliable FSI simulations is limited because FSI techniques pose severe numerical difficulties, but also due to scarce data on the mechanical behavior and material constants of IA tissue. Additionally, works that have investigated the impact of different wall modeling choices for patient-specific IAs geometries are a few and often with limited conclusions. Thus our present study investigated the effect of different modeling approaches to simulate the motion of an IA. We used three hyperelastic laws - the Yeoh law, the three-parameter Mooney-Rivlin law, and a Fung-like law with a single parameter - and two different ways of modeling the wall thickness and tissue mechanical properties - one assumed that both were uniform while the other accounted for the heterogeneity of the wall by using a "hemodynamics-driven" approach in which both thickness and material constants varied spatially with the cardiac-cycle-averaged hemodynamics. Pulsatile numerical simulations, with patient-specific vascular geometries harboring IAs, were carried out using the one-way fluid-solid interaction solution strategy implemented in solids4foam, an extension of OpenFOAM®, in which the blood flow is solved and applied as the driving force of the wall motion. We found that different wall morphology models yield smaller absolute differences in the mechanical response than different hyperelastic laws. Furthermore, the stretch levels of IAs walls were more sensitive to the hyperelastic and material constants than the stress. These findings could be used to guide modeling decisions on IA simulations, since the computational behavior of each law was different, for example, with the Yeoh law being the fastest to converge.
Collapse
Affiliation(s)
- I L Oliveira
- São Paulo State University (UNESP), School of Engineering, Ilha Solteira, Mechanical Engineering Department, Thermal Sciences Building, Avenida Brasil, 56, Ilha Solteira - SP, Brazil.
| | - P Cardiff
- University College Dublin (UCD), School of Mechanical and Materials Engineering, Dublin, Ireland.
| | - C E Baccin
- Interventional Neuroradiology/Endovascular Neurosurgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| | - J L Gasche
- São Paulo State University (UNESP), School of Engineering, Ilha Solteira, Mechanical Engineering Department, Brazil.
| |
Collapse
|
3
|
Li B, Liu T, Liu J, Liu Y, Cao B, Zhao X, Wang W, Shi M, Zhang L, Xu K, Chen M, Wen C, Zhang M. Reliability of using generic flow conditions to quantify aneurysmal haemodynamics: A comparison against simulations incorporating boundary conditions measured in vivo. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 225:107034. [PMID: 35914441 DOI: 10.1016/j.cmpb.2022.107034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/06/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVES Initiation, growth, and rupture of intracranial aneurysms are believed to be closely related to their local haemodynamic environment. While haemodynamics can be characterised by use of computational fluid dynamics (CFD), its reliability depends heavily upon accurate assumption of the boundary conditions. Herein, we compared the simulated aneurysmal haemodynamics obtained by use of generic boundary conditions against those obtained under flow conditions measured in vivo. METHODS We prospectively recruited 19 patients with intracranial aneurysms requiring 3-dimensional rotational angiography, during which blood pressure at the internal carotid artery was probed by catheter and flowrate measured by a dedicated software tool. Using these flow conditions measured in vivo, we quantified the aneurysmal haemodynamics for each patient by CFD, and then compared the results with those derived from a generic condition reported in the literature, in terms of the time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), relative residence time (RRT), and percentage of the intra-aneurysmal flow (PIAF). In addition, the effects on aneurysmal haemodynamics of different outflow strategies (splitting method vs. Murray's Law) and simulation schemes (transient vs. steady-state) relative to each flow condition were also assessed. RESULTS Differences in the simulated TAWSS (-6.08 ± 10.64 Pa, p = 0.001), OSI (0.06 ± 0.13, p = 0.001), and PIAF (-0.05 ± 0.20, p = 0.012) between the patient-specific and generic boundary conditions were found to be statistically significant, in contrast to that in the RRT (49 ± 307 Pa-1, p = 0.062). Outflow strategies did not yield statistically significant differences in any of the investigated parameters (all p > 0.05); rather, the resulting parameters were found to be in good correlations (all r > 0.71, p < 0.001). Difference between the aneurysmal TAWSS and the WSS derived from cycle-averaged flowrate condition was found to be minor (0.66 ± 1.36 Pa, p = 0.000), so was that between PIAFs obtained respectively from the transient and steady-state simulations (0.02 ± 0.05, p = 0.000). CONCLUSIONS Incorporating into simulation the patient-specific boundary conditions is critical for CFD to characterise aneurysmal haemodynamics, while outflow strategies may not introduce significant uncertainties. Steady-state simulation incorporating the cycle-averaged flow condition may produce unbiased WSS and PIAF compared to the transient analysis.
Collapse
Affiliation(s)
- Bao Li
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Tao Liu
- Neurosurgery Department, Medical School of Nanjing University Affiliated Drum Tower Hospital, No. 321 Zhongshan Road, Gulou, Nanjing, Jiangsu, China.
| | - Jincheng Liu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Youjun Liu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Boqiang Cao
- Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xi Zhao
- Philips Healthcare China, Shanghai 200072, China
| | - Wenxin Wang
- Philips Healthcare China, Shanghai 200072, China
| | - Mengchao Shi
- Philips Healthcare China, Shanghai 200072, China
| | - Liyuan Zhang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Ke Xu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Mingyan Chen
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Chuanqi Wen
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Mingzi Zhang
- Macquarie Medical School, Faculty of Medicine, Health, and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
4
|
Ballambat RP, Zuber M, Khader SMA, Ayachit A, Ahmad KAB, Vedula RR, Kamath SG, Shuaib IL. Influence of postural changes on haemodynamics in internal carotid artery bifurcation aneurysm using numerical methods. Vis Comput Ind Biomed Art 2022; 5:11. [PMID: 35394268 PMCID: PMC8993999 DOI: 10.1186/s42492-022-00107-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 03/14/2022] [Indexed: 01/09/2023] Open
Abstract
Cerebral intracranial aneurysms are serious problems that can lead to stroke, coma, and even death. The effect of blood flow on cerebral aneurysms and their relationship with rupture are unknown. In addition, postural changes and their relevance to haemodynamics of blood flow are difficult to measure in vivo using clinical imaging alone. Computational simulations investigating the detailed haemodynamics in cerebral aneurysms have been developed in recent times not only to understand the progression and rupture but also for clinical evaluation and treatment. In the present study, the haemodynamics of a patient-specific case of a large aneurysm on the left side internal carotid bifurcation (LICA) and no aneurysm on the right side internal carotid bifurcation (RICA) was investigated. The simulation of these patient-specific models using fluid–structure interaction provides a valuable comparison of flow behavior between normal and aneurysm models. The influences of postural changes were investigated during standing, sleeping, and head-down (HD) position. Significant changes in flow were observed during the HD position and quit high arterial blood pressure in the internal carotid artery (ICA) aneurysm model was established when compared to the normal ICA model. The velocity increased abruptly during the HD position by more than four times (LICA and RICA) and wall shear stress by four times (LICA) to ten times (RICA). The complex spiral flow and higher pressures prevailing within the dome increase the risk of aneurysm rupture.
Collapse
Affiliation(s)
- Raghuvir Pai Ballambat
- Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Mohammad Zuber
- Department of Aeronautical and Automobile Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Shah Mohammed Abdul Khader
- Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India.
| | - Anurag Ayachit
- Department of Radiology and Imaging, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Kamarul Arifin Bin Ahmad
- Department of Aerospace Engineering, Faculty of Engineering, Universitist Putra Malaysia, 43499, Kuala Lumpur, Malaysia
| | - Rajanikanth Rao Vedula
- Department of Radiology and Imaging, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sevagur Ganesh Kamath
- Department of Cardio-Vascular and Thoracic Surgery, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Ibrahim Lutfi Shuaib
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200, George Town, Malaysia
| |
Collapse
|
5
|
Lamsal S, Burkins B, Matteo M, Matteo J, Harmon TS. A Rare Case of Congenital Internal Carotid Artery Agenesis and Contralateral Internal Carotid Artery Aneurysm. Cureus 2022; 14:e23619. [PMID: 35505696 PMCID: PMC9053359 DOI: 10.7759/cureus.23619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/29/2022] [Indexed: 11/06/2022] Open
Abstract
Agenesis of the internal carotid artery (ICA) is a rare congenital entity. This anomaly is typically occult in nature. However, the effects of an incidental discovery secondary to a contralateral ICA aneurysmal rupture can be devastating. The association between agenesis of the ICA and contralateral intracranial aneurysm formation is significantly higher than de novo incidental intracranial aneurysms in the general population. It is important to evaluate the presence of a contralateral intracranial aneurysm in the setting of known agenesis of the ICA. This allows for the performance of prophylactic embolization and characterizes collateral cerebral circulation.
Collapse
|
6
|
Mayoral I, Bevilacqua E, Gómez G, Hmadcha A, González-Loscertales I, Reina E, Sotelo J, Domínguez A, Pérez-Alcántara P, Smani Y, González-Puertas P, Mendez A, Uribe S, Smani T, Ordoñez A, Valverde I. Tissue engineered in-vitro vascular patch fabrication using hybrid 3D printing and electrospinning. Mater Today Bio 2022; 14:100252. [PMID: 35509864 PMCID: PMC9059085 DOI: 10.1016/j.mtbio.2022.100252] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 11/05/2022] Open
Abstract
Three-dimensional (3D) engineered cardiovascular tissues have shown great promise to replace damaged structures. Specifically, tissue engineering vascular grafts (TEVG) have the potential to replace biological and synthetic grafts. We aimed to design an in-vitro patient-specific patch based on a hybrid 3D print combined with vascular smooth muscle cells (VSMC) differentiation. Based on the medical images of a 2 months-old girl with aortic arch hypoplasia and using computational modelling, we evaluated the most hemodynamically efficient aortic patch surgical repair. Using the designed 3D patch geometry, the scaffold was printed using a hybrid fused deposition modelling (FDM) and electrospinning techniques. The scaffold was seeded with multipotent mesenchymal stem cells (MSC) for later maturation to derived VSMC (dVSMC). The graft showed adequate resistance to physiological aortic pressure (burst pressure 101 ± 15 mmHg) and a porosity gradient ranging from 80 to 10 μm allowing cells to infiltrate through the entire thickness of the patch. The bio-scaffolds showed good cell viability at days 4 and 12 and adequate functional vasoactive response to endothelin-1. In summary, we have shown that our method of generating patient-specific patch shows adequate hemodynamic profile, mechanical properties, dVSMC infiltration, viability and functionality. This innovative 3D biotechnology has the potential for broad application in regenerative medicine and potentially in heart disease prevention.
Collapse
Key Words
- 3D printing
- Electrospinning
- Endothelin Receptor A, ETA
- Endothelin Receptor B, ETB
- Mesenchymal stem cells
- Reverse Transcription, Rt
- Three-dimensional, 3D
- Tissue engineering
- Vascular graft
- anti-alpha-smooth muscle actin, α-SMA
- anti-cluster of differentiation 31, CD31
- anti-fibroblast specific protein 1, FSP1
- anti-smooth muscle protein 22, SM-22
- bone morphogenetic protein, BMP4
- computation fluid dynamic, CFD
- computed tomography, CT
- derived VSMC, dVSMC
- endothelin-1, ET-1
- extracellular matrix, ECM
- fused deposition modelling, FDM
- mesenchymal stem cells, MSC
- platelet-derived growth factor composed by two beta chains, PDGF-BB
- room temperature, RT
- tissue engineering vascular grafts, TEVG
- transforming growth factor beta 1, TGFβ-1
- vascular smooth muscle cells, VSMC
- wall shear stress, WSS
- western blotting, WB
Collapse
Affiliation(s)
- Isabel Mayoral
- Cardiovascular Pathophysiology Group, Institute of Biomedicine of Seville- IBiS, University of Seville /HUVR/CSIC, Seville, Spain
| | - Elisa Bevilacqua
- Cardiovascular Pathophysiology Group, Institute of Biomedicine of Seville- IBiS, University of Seville /HUVR/CSIC, Seville, Spain
| | - Gorka Gómez
- Cardiovascular Pathophysiology Group, Institute of Biomedicine of Seville- IBiS, University of Seville /HUVR/CSIC, Seville, Spain
| | - Abdelkrim Hmadcha
- Advanced Therapies and Regenerative Medicine Research Group.General Hospital, Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - Ignacio González-Loscertales
- Department Mechanical, Thermal and Fluids Engineering, School of Engineering, University of Málaga, Málaga, Spain
| | - Esther Reina
- Department of Mechanical and Manufacturing Engineering, University of Seville, Seville, Spain
| | - Julio Sotelo
- School of Biomedical Engineering, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Institute for Intelligent Healthcare Engineering, iHEALTH, Millennium Nucleus in Cardiovascular Magnetic Resonance, Cardio MR, and Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Pedro Pérez-Alcántara
- Department of Mechanical and Manufacturing Engineering, University of Seville, Seville, Spain
| | - Younes Smani
- Department of Molecular Biology and Biochemical Engineering, Andalusian Center of Developmental Biology, CSIC, University of Pablo de Olavide, Seville, Spain
| | | | - Ana Mendez
- Pediatric Cardiology Unit, Hospital Virgen Del Rocio, Seville, Spain
| | - Sergio Uribe
- Millennium Institute for Intelligent Healthcare Engineering, iHEALTH, Millennium Nucleus in Cardiovascular Magnetic Resonance, Cardio MR, and Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile
- Radiology Department, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tarik Smani
- Cardiovascular Pathophysiology Group, Institute of Biomedicine of Seville- IBiS, University of Seville /HUVR/CSIC, Seville, Spain
- Department of Medical Physiology and Biophysics, School of Medicine, University of Seville, Seville, Spain
| | - Antonio Ordoñez
- Cardiovascular Pathophysiology Group, Institute of Biomedicine of Seville- IBiS, University of Seville /HUVR/CSIC, Seville, Spain
| | - Israel Valverde
- Cardiovascular Pathophysiology Group, Institute of Biomedicine of Seville- IBiS, University of Seville /HUVR/CSIC, Seville, Spain
- Pediatric Cardiology Unit, Hospital Virgen Del Rocio, Seville, Spain
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Pharmacology, Pediatric and Radiology, School of Medicine, University of Seville, Seville, Spain
| |
Collapse
|
7
|
A review of hemodynamic parameters in cerebral aneurysm. INTERDISCIPLINARY NEUROSURGERY-ADVANCED TECHNIQUES AND CASE MANAGEMENT 2020. [DOI: 10.1016/j.inat.2020.100716] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Effects of size and elasticity on the relation between flow velocity and wall shear stress in side-wall aneurysms: A lattice Boltzmann-based computer simulation study. PLoS One 2020; 15:e0227770. [PMID: 31945111 PMCID: PMC6964897 DOI: 10.1371/journal.pone.0227770] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/27/2019] [Indexed: 11/19/2022] Open
Abstract
Blood flow in an artery is a fluid-structure interaction problem. It is widely accepted that aneurysm formation, enlargement and failure are associated with wall shear stress (WSS) which is exerted by flowing blood on the aneurysmal wall. To date, the combined effect of aneurysm size and wall elasticity on intra-aneurysm (IA) flow characteristics, particularly in the case of side-wall aneurysms, is poorly understood. Here we propose a model of three-dimensional viscous flow in a compliant artery containing an aneurysm by employing the immersed boundary-lattice Boltzmann-finite element method. This model allows to adequately account for the elastic deformation of both the blood vessel and aneurysm walls. Using this model, we perform a detailed investigation of the flow through aneurysm under different conditions with a focus on the parameters which may influence the wall shear stress. Most importantly, it is shown in this work that the use of flow velocity as a proxy for wall shear stress is well justified only in those sections of the vessel which are close to the ideal cylindrical geometry. Within the aneurysm domain, however, the correlation between wall shear stress and flow velocity is largely lost due to the complexity of the geometry and the resulting flow pattern. Moreover, the correlations weaken further with the phase shift between flow velocity and transmural pressure. These findings have important implications for medical applications since wall shear stress is believed to play a crucial role in aneurysm rupture.
Collapse
|
9
|
Riccardello GJ, Shastri DN, Changa AR, Thomas KG, Roman M, Prestigiacomo CJ, Gandhi CD. Influence of Relative Residence Time on Side-Wall Aneurysm Inception. Neurosurgery 2019; 83:574-581. [PMID: 28945849 DOI: 10.1093/neuros/nyx433] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 07/21/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Relative residence time (RRT) is a marker of disturbed blood flow, marked by low magnitude and high oscillatory wall shear stress (WSS). The relation between solute residence time in proximity to the vascular endothelium and the atherosclerotic process is well appreciated in the literature. OBJECTIVE To assess the influence of RRT on side-wall aneurysm inception to better understand the role of atherosclerosis in aneurysm formation. METHODS Fourteen side-wall internal carotid artery aneurysms from the Aneurisk repository which met criteria for parent vessel reconstruction were reconstructed with Vascular Modeling Toolkit. Computational fluid dynamics analysis was carried out in Fluent. RRT was calculated in MATLAB (The MathWorks Inc, Natick, Massachusetts). We analyzed the results for correlations, defined as presence or absence of local elevations in RRT in specific regions of vasculature. RESULTS RRT was concluded to be negatively correlated with aneurysm inception in this study of side-wall internal carotid artery aneurysms, with 12/14 cases yielding the absence of local RRT elevations within or in close proximity of the removed ostium. Subsequent analysis of WSS showed that 11 of 14 aneurysms were formed in an atheroprotective environment, with only 1 of 14 formed in an atherogenic environment. Two models were found to be of indeterminate environment. CONCLUSION Atherogenesis and atherosclerosis have long been thought to be a major inciting factor responsible for the formation of aneurysms in the cerebral vasculature. We propose that inception of side-wall aneurysms occurs in hemodynamic environments that promote an atheroprotective endothelial phenotype and that the atheroprotective phenotype is therefore aneurysmogenic.
Collapse
Affiliation(s)
- Gerald J Riccardello
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Darshan N Shastri
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Abhinav R Changa
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Kiran G Thomas
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Max Roman
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey
| | | | - Chirag D Gandhi
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey.,Department of Radiology, Rutgers New Jersey Medical School, Newark, New Jersey
| |
Collapse
|
10
|
Hemodynamics and Wall Mechanics after Surgical Repair of Aortic Arch: Implication for Better Clinical Decisions. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9040807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Graft repair of aortic coarctation is commonly used to mimic the physiological aortic arch shape and function. Various graft materials and shapes have been adopted for the surgery. The goal of this work is to quantitatively assess the impact of graft materials and shapes in the hemodynamics and wall mechanics of the restored aortic arch and its correlation with clinical outcomes. A three-dimensional aortic arch model was reconstructed from magnetic resonance images. The fluid–structure interaction (FSI) analysis was performed to characterize the hemodynamics and solid wall mechanics of the repaired aortic arch. Two graft shapes (i.e., a half-moon shape and a crescent one) were considered. Material choices of the aortic arch repair included three commonly used graft materials (i.e., polytetrafluoroethylene (PTFE) synthetic graft, CorMatrix extracellular matrix, and pulmonary homograft) as well as one native tissue serving as a control. The pathological hemodynamic parameters, in terms of the percentage area of low wall shear stress (WSS), high oscillatory shear index (OSI), and high relative residence time (RRT), were quantified to be associated with potential clinical outcomes. Results have shown that the peak von Mises stress for the aortic arch repaired by the crescent graft was 76% less than that of the half-moon graft. Flow disturbance and recirculation were also minimized with the crescent graft. Moreover, pathological hemodynamic parameters were significantly reduced with the crescent graft. The graft material mismatch with the surrounding tissue aggregated the stress concentration on the aortic wall, but had minimal impact on flow dynamics. The present work demonstrated the role and importance of the graft geometry and materials on hemodynamics and wall mechanics, which could guide optimal graft decisions towards better clinical outcomes.
Collapse
|
11
|
Jiang P, Liu Q, Wu J, Chen X, Li M, Li Z, Yang S, Guo R, Gao B, Cao Y, Wang S. A Novel Scoring System for Rupture Risk Stratification of Intracranial Aneurysms: A Hemodynamic and Morphological Study. Front Neurosci 2018; 12:596. [PMID: 30233292 PMCID: PMC6133991 DOI: 10.3389/fnins.2018.00596] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/08/2018] [Indexed: 11/13/2022] Open
Abstract
Objective: The aim of the present study is to investigate the potential morphological and hemodynamic risk factors related to intracranial aneurysms (IAs) rupture and establish a system to stratify the risk of IAs rupture to help the clinical decision-making. Methods: Patients admitted to our hospital for single-IAs were selected from January 2012 and January 2018. A propensity score matching was conducted to match patients. The morphological parameters were obtained from high solution CTA images, and the hemodynamic parameters were obtained in accordance with the outcomes of computational fluid dynamics (CFDs) simulation. Differences in the morphologic and hemodynamic parameters were compared. The significant parameters were selected to establish a novel scoring system (Intracranial Aneurysm Rupture Score, IARS). The comparison was drawn between the discriminating accuracy of IARS and the Rupture Resemblance Score (RRS) system to verify the value of IARS. Then, a group of patients with unruptured IAs was stratified into the high risk and low risk groups by IARS and RRS system separately and was followed up for 18-27 months to verify the value of IARS. The outcome of different stratifications was compared. Results: The matching process yielded 167 patients in each group. Differences of statistical significance were found in aneurysm length (p = 0.001), perpendicular height (H) (p < 0.001), aspect ratio (AR) (p < 0.001), size ratio (SR) (p < 0.001), deviated angle (DA) (p < 0.001), normalized average wall shear stress (NWSSa) (p < 0.001), wall shear stress gradient (WSSG) (p < 0.001), low shear area ratio (LSAR) (p = 0.01), and oscillatory shear index (OSI) (p = 0.01). Logistic regression analysis further demonstrated that SR, DA, NWSSa, LSAR, and OSI were the independent risk factors of IAs rupture. SR, DA, LSAR, and OSI were finally selected to establish the IARS. Our present IARS showed a higher discriminating value (AUC 0.81 vs. 0.77) in comparison with the RRS (SR, NWSSa, and OSI). After follow-up, seven patients were subject to IAs rupture. 5/26 in high risk group stratified by IARS, yet 7/57 in high risk group stratified by RRS. The accuracy of IARS was further verified (19.2% vs. 12.3%, AUC for the IARS and the RRS was 0.723 and 0.673, respectively). Conclusion: SR, DA, NWSSa, LSAR, and OSI were considered the independent risk factors of IAs rupture. Our novel IARS showed higher accuracy in discriminating IA rupture in comparison with RRS.
Collapse
Affiliation(s)
- Pengjun Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Qingyuan Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Jun Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Xin Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Maogui Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Zhengsong Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Shuzhe Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Rui Guo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Bin Gao
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China.,Department of Bioengineering, School of Life Sciences, Beijing University of Technology, Beijing, China
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
12
|
Longo M, Granata F, Racchiusa S, Mormina E, Grasso G, Longo GM, Garufi G, Salpietro FM, Alafaci C. Role of Hemodynamic Forces in Unruptured Intracranial Aneurysms: An Overview of a Complex Scenario. World Neurosurg 2017; 105:632-642. [DOI: 10.1016/j.wneu.2017.06.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/04/2017] [Accepted: 06/05/2017] [Indexed: 12/16/2022]
|
13
|
Berg P, Saalfeld S, Voß S, Redel T, Preim B, Janiga G, Beuing O. Does the DSA reconstruction kernel affect hemodynamic predictions in intracranial aneurysms? An analysis of geometry and blood flow variations. J Neurointerv Surg 2017; 10:290-296. [PMID: 28465404 DOI: 10.1136/neurintsurg-2017-012996] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/29/2017] [Accepted: 04/13/2017] [Indexed: 11/04/2022]
Abstract
BACKGROUND Computational fluid dynamics (CFD) blood flow predictions in intracranial aneurysms promise great potential to reveal patient-specific flow structures. Since the workflow from image acquisition to the final result includes various processing steps, quantifications of the individual introduced potential error sources are required. METHODS Three-dimensional (3D) reconstruction of the acquired imaging data as input to 3D model generation was evaluated. Six different reconstruction modes for 3D digital subtraction angiography (DSA) acquisitions were applied to eight patient-specific aneurysms. Segmentations were extracted to compare the 3D luminal surfaces. Time-dependent CFD simulations were carried out in all 48 configurations to assess the velocity and wall shear stress (WSS) variability due to the choice of reconstruction kernel. RESULTS All kernels yielded good segmentation agreement in the parent artery; deviations of the luminal surface were present at the aneurysm neck (up to 34.18%) and in distal or perforating arteries. Observations included pseudostenoses as well as noisy surfaces, depending on the selected reconstruction kernel. Consequently, the hemodynamic predictions show a mean SD of 11.09% for the aneurysm neck inflow rate, 5.07% for the centerline-based velocity magnitude, and 17.83%/9.53% for the mean/max aneurysmal WSS, respectively. In particular, vessel sections distal to the aneurysms yielded stronger variations of the CFD values. CONCLUSIONS The choice of reconstruction kernel for DSA data influences the segmentation result, especially for small arteries. Therefore, if precise morphology measurements or blood flow descriptions are desired, a specific reconstruction setting is required. Furthermore, research groups should be encouraged to denominate the kernel types used in future hemodynamic studies.
Collapse
Affiliation(s)
- P Berg
- Department of Fluid Dynamics and Technical Flows, University of Magdeburg, Magdeburg, Germany
| | - S Saalfeld
- Department of Simulation and Graphics, University of Magdeburg, Magdeburg, Germany
| | - S Voß
- Department of Fluid Dynamics and Technical Flows, University of Magdeburg, Magdeburg, Germany
| | - T Redel
- Siemens Healthcare GmbH, Forchheim, Germany
| | - B Preim
- Department of Simulation and Graphics, University of Magdeburg, Magdeburg, Germany
| | - G Janiga
- Department of Fluid Dynamics and Technical Flows, University of Magdeburg, Magdeburg, Germany
| | - O Beuing
- Institute of Neuroradiology, University Hospital Magdeburg, Magdeburg, Germany
| |
Collapse
|
14
|
Sano T, Ishida F, Tsuji M, Furukawa K, Shimosaka S, Suzuki H. Hemodynamic Differences Between Ruptured and Unruptured Cerebral Aneurysms Simultaneously Existing in the Same Location: 2 Case Reports and Proposal of a Novel Parameter Oscillatory Velocity Index. World Neurosurg 2017; 98:868.e5-868.e10. [DOI: 10.1016/j.wneu.2016.12.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 10/20/2022]
|
15
|
Rinaldo L, McCutcheon BA, Murphy ME, Bydon M, Rabinstein AA, Lanzino G. Relationship of A 1 segment hypoplasia to anterior communicating artery aneurysm morphology and risk factors for aneurysm formation. J Neurosurg 2016; 127:89-95. [PMID: 27689465 DOI: 10.3171/2016.7.jns16736] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Hypoplasia of the A1 segment of the anterior cerebral artery is frequently observed in patients with anterior communicating artery (ACoA) aneurysms. The effect of this anatomical variant on ACoA aneurysm morphology is not well understood. METHODS Digital subtraction angiography images were reviewed for 204 patients presenting to the authors' institution with either a ruptured or an unruptured ACoA aneurysm. The ratio of the width of the larger A1 segment to the smaller A1 segment was calculated. Patients with an A1 ratio greater than 2 were categorized as having A1 segment hypoplasia. The relationship of A1 segment hypoplasia to both patient and aneurysm characteristics was then assessed. RESULTS Of 204 patients that presented with an ACoA aneurysm, 34 (16.7%) were found to have a hypoplastic A1. Patients with A1 segment hypoplasia were less likely to have a history of smoking (44.1% vs 62.9%, p = 0.0410). ACoA aneurysms occurring in the setting of a hypoplastic A1 were also found to have a larger maximum diameter (mean 7.7 vs 6.0 mm, p = 0.0084). When considered as a continuous variable, increasing A1 ratio was associated with decreasing aneurysm dome-to-neck ratio (p = 0.0289). There was no significant difference in the prevalence of A1 segment hypoplasia between ruptured and unruptured aneurysms (18.9% vs 10.7%; p = 0.1605). CONCLUSIONS Our results suggest that a hypoplastic A1 may affect the morphology of ACoA aneurysms. In addition, the relative lack of traditional risk factors for aneurysm formation in patients with A1 segment hypoplasia argues for the importance of hemodynamic factors in the formation of ACoA aneurysms in this anatomical setting.
Collapse
Affiliation(s)
| | | | | | | | | | - Giuseppe Lanzino
- Departments of 1 Neurosurgery.,Neurointerventional Radiology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
16
|
Eker OF, Boudjeltia KZ, Jerez RAC, Le Bars E, Sanchez M, Bonafé A, Costalat V, Courbebaisse G. MR derived volumetric flow rate waveforms of internal carotid artery in patients treated for unruptured intracranial aneurysms by flow diversion technique. J Cereb Blood Flow Metab 2015; 35:2070-9. [PMID: 26264871 PMCID: PMC4671130 DOI: 10.1038/jcbfm.2015.176] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/27/2015] [Accepted: 06/22/2015] [Indexed: 11/09/2022]
Abstract
Little is known about the hemodynamic disturbances induced by the cerebral aneurysms in the parent artery and the effect of flow diverter stents (FDS) on these latter. A better understanding of the aneurysm-parent vessel complex relationship may aid our understanding of this disease and to optimize its treatment. The ability of volumetric flow rate (VFR) waveform to reflect the arterial compliance modifications is well known. By analyzing the VFR waveform and the pulsatility in the parent vessel, this study aimed to test the hypotheses that (1) intracranial aneurysms might disrupt the blood flow of the parent vessel and (2) the treatment by FDS might have measurable corrective effect on these changes. Ten patients followed for unruptured intracranial aneurysms treated by FDS and ten healthy volunteers as control group were included in this study. Two-dimensional quantitative phase-contrast magnetic resonance imaging (MRI) was performed on each patient on the ICA artery upstream and downstream to the aneurysm, and on each volunteer at similar locations. The aneurysms altered significantly the parent vessel pulsatility and this effect was correlated to their volume. The aneurysms treatment by FDS allowed for the restoration of a normally modulated flow and pulsatility correction in the parent vessel.
Collapse
Affiliation(s)
- Omer F Eker
- Department of Interventional Neuroradiology, Gui de Chauliac Hospital, CHRU de Montpellier, Montpellier, France.,CREATIS Laboratory-INSA Lyon, Villeurbanne, France.,Laboratory of Experimental Medicine (ULB 222 Unit), CHU Charleroi, Hôpital Vésale, Montigny-le-Tilleul, Belgium
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU Charleroi, Hôpital Vésale, Montigny-le-Tilleul, Belgium
| | | | - Emmanuelle Le Bars
- Department of Interventional Neuroradiology, Gui de Chauliac Hospital, CHRU de Montpellier, Montpellier, France
| | - Mathieu Sanchez
- Department of Interventional Neuroradiology, Gui de Chauliac Hospital, CHRU de Montpellier, Montpellier, France
| | - Alain Bonafé
- Department of Interventional Neuroradiology, Gui de Chauliac Hospital, CHRU de Montpellier, Montpellier, France
| | - Vincent Costalat
- Department of Interventional Neuroradiology, Gui de Chauliac Hospital, CHRU de Montpellier, Montpellier, France
| | | |
Collapse
|
17
|
Feliciani G, Potters WV, van Ooij P, Schneiders JJ, Nederveen AJ, van Bavel E, Majoie CB, Marquering HA. Multiscale 3-D + t Intracranial Aneurysmal Flow Vortex Detection. IEEE Trans Biomed Eng 2015; 62:1355-62. [DOI: 10.1109/tbme.2014.2387874] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Castro MA, Ahumada Olivares MC, Putman CM, Cebral JR. Unsteady wall shear stress analysis from image-based computational fluid dynamic aneurysm models under Newtonian and Casson rheological models. Med Biol Eng Comput 2014; 52:827-39. [PMID: 25154981 DOI: 10.1007/s11517-014-1189-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/14/2014] [Indexed: 11/24/2022]
Abstract
The aim of this work was to determine whether or not Newtonian rheology assumption in image-based patient-specific computational fluid dynamics (CFD) cerebrovascular models harboring cerebral aneurysms may affect the hemodynamics characteristics, which have been previously associated with aneurysm progression and rupture. Ten patients with cerebral aneurysms with lobulations were considered. CFD models were reconstructed from 3DRA and 4DCTA images by means of region growing, deformable models, and an advancing front technique. Patient-specific FEM blood flow simulations were performed under Newtonian and Casson rheological models. Wall shear stress (WSS) maps were created and distributions were compared at the end diastole. Regions of lower WSS (lobulation) and higher WSS (neck) were identified. WSS changes in time were analyzed. Maximum, minimum and time-averaged values were calculated and statistically compared. WSS characterization remained unchanged. At high WSS regions, Casson rheology systematically produced higher WSS minimum, maximum and time-averaged values. However, those differences were not statistically significant. At low WSS regions, when averaging over all cases, the Casson model produced higher stresses, although in some cases the Newtonian model did. However, those differences were not significant either. There is no evidence that Newtonian model overestimates WSS. Differences are not statistically significant.
Collapse
Affiliation(s)
- Marcelo A Castro
- Grupo de Investigación y Desarrollo en Bioingeniería, Universidad Tecnológica Nacional, Facultad Regional Buenos Aires, CONICET, Medrano 951, CP 1179, Buenos Aires, Argentina,
| | | | | | | |
Collapse
|