1
|
Morozov VN, Klimovich MA, Kolyvanova MA, Kuzmin VA. On the behavior of Hoechst 33258 in DNA-PEG mixtures. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 339:126272. [PMID: 40273768 DOI: 10.1016/j.saa.2025.126272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 03/27/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025]
Abstract
Most of the studies on the interaction of fluorescent dyes with DNA have been performed under conditions radically different from those occurring in situ. Among others, this includes diluteness of experimental solutions, their homogeneity, and presence of a large amount of free water. To a certain extent, some model systems can help to approach the biological conditions. Thus, since some features of liquid-crystalline-like packaging of DNA were found in a number of living systems, to shed light on the behavior of Hoechst 33258 in biological-like conditions, we performed a detailed study of its properties in DNA-PEG mixtures, and, in particular, in the dispersed mesophases formed via polymer and salt induced (psi-) condensation. Being in complex with DNA, Hoechst 33258 shows a high sensitivity to the changes in osmotic conditions - the addition of PEG leads to a release of the dye molecules. However, this effect nonlinearly depends on osmolality. Individually, neither PEG nor NaCl at the studied concentrations significantly affect its complex with nucleic acid. The effect is caused precisely by their synergistic action. In cases of the dispersed systems formation, significant fraction of Hoechst 33258 molecules is retained within the resulting particles and is protected even from further increase in osmolality. This is partly due to competition between the processes of the dye releasing and formation of the dispersed particles.
Collapse
Affiliation(s)
- Vladimir N Morozov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina, Moscow 119334, Russia.
| | - Mikhail A Klimovich
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina, Moscow 119334, Russia; Burnazyan Federal Medical Biophysical Center, Federal Medical Biological Agency of the Russian Federation, 23 Marshala Novikova, Moscow 123182, Russia
| | - Maria A Kolyvanova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina, Moscow 119334, Russia; Burnazyan Federal Medical Biophysical Center, Federal Medical Biological Agency of the Russian Federation, 23 Marshala Novikova, Moscow 123182, Russia
| | - Vladimir A Kuzmin
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina, Moscow 119334, Russia
| |
Collapse
|
2
|
Chen W, Li S, Albahi A, Ye S, Li J, Li B. The effect of konjac glucomannan on enzyme kinetics and fluorescence spectrometry of digestive enzymes: An in vitro research from the perspective of macromolecule crowding. Food Res Int 2024; 184:114247. [PMID: 38609226 DOI: 10.1016/j.foodres.2024.114247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
Konjac glucomannan (KGM) can significantly prolong gastrointestinal digestion. However, it is still worth investigating whether the macromolecular crowding (MMC) induced by KGM is correlated with digestion. In this paper, the MMC effect was quantified by fluorescence resonance energy transfer and microrheology, and the digests of starch, protein, and oil were determined. The digestive enzymes were analyzed by enzyme reaction kinetic and fluorescence quenching. The results showed that higher molecular weight (604.85 ∼ 1002.21 kDa) KGM created a larger MMC (>0.8), and influenced the digestion of macronutrients; the digests of starch, protein, and oil all decreased significantly. MMC induced by KGM decreased the Michaelis-Menten constants (Km and Vmax) of pancreatic α-amylase (PPA), pepsin (PEP), and pancreatic lipase (PPL). The larger MMC (>0.8) induced by KGM resulted in the decrease of fluorescence quenching constants (Ksv) in PPA and PPL, and the increase of Ksv in PEP. Therefore, varying degrees of MMC induced by KGM could play a role in regulating digestion and the inhibitory effect on digestion was more significant in a relatively more crowded environment induced by KGM. This study provides theoretical support for the strategies of nutrient digestion regulation from the perspective of MMC caused by dietary fiber.
Collapse
Affiliation(s)
- Wenjing Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Sha Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Amgad Albahi
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuxin Ye
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
3
|
Sun YL, Tang YF, Wang L, Li MZ, Chen ZX. Sodium caseinate medium promotes the in vitro digestion of starch: An insight into the macromolecular crowding effect. Food Chem 2024; 436:137763. [PMID: 37857200 DOI: 10.1016/j.foodchem.2023.137763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/07/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023]
Abstract
The macromolecular crowding effects of polysaccharides can alter the activity of digestive enzymes; however, whether protein crowding affects the digestive properties of starch remains unknown. Herein, the interaction of sodium caseinate (NaCas) with starch and pig pancreas α-amylase (PPA) and their effects on enzyme activity and starch digestion were studied. NaCas delayed gelatinization and reduced the leaching amount of amylose and increased the relative content of easily digestible starch. The ratio of the ordered structure (α-helix and β-sheet) to disordered structure (β-turns) of PPA increased with NaCas concentration, indicating that NaCas maintained the conformational stability of the enzyme and thereby accelerated the rate of enzymatic hydrolysis. This study demonstrates the detailed mechanism of NaCas-induced enhancement of starch digestibility and suggests a nonnegligible macromolecular crowding effect should be considered when evaluating the function of food macromolecules.
Collapse
Affiliation(s)
- Yu-Long Sun
- Molecular Food Science Laboratory, College of Food & Biology Engineering, Zhejiang Gongshang University, Hangzhou, China; ACON Biotech (Hangzhou) Co., Ltd., Hangzhou, China
| | - Yi-Fan Tang
- Molecular Food Science Laboratory, College of Food & Biology Engineering, Zhejiang Gongshang University, Hangzhou, China
| | - Lei Wang
- Molecular Food Science Laboratory, College of Food & Biology Engineering, Zhejiang Gongshang University, Hangzhou, China
| | - Mi-Zhuan Li
- Molecular Food Science Laboratory, College of Food & Biology Engineering, Zhejiang Gongshang University, Hangzhou, China
| | - Zhong-Xiu Chen
- Molecular Food Science Laboratory, College of Food & Biology Engineering, Zhejiang Gongshang University, Hangzhou, China.
| |
Collapse
|
4
|
Biswas S, Hecht AL, Noble SA, Huang Q, Gillilan RE, Xu AY. Understanding the Impacts of Molecular and Macromolecular Crowding Agents on Protein-Polymer Complex Coacervates. Biomacromolecules 2023; 24:4771-4782. [PMID: 37815312 PMCID: PMC10646951 DOI: 10.1021/acs.biomac.3c00545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/25/2023] [Indexed: 10/11/2023]
Abstract
Complex coacervation refers to the liquid-liquid phase separation (LLPS) process occurring between charged macromolecules. The study of complex coacervation is of great interest due to its implications in the formation of membraneless organelles (MLOs) in living cells. However, the impacts of the crowded intracellular environment on the behavior and interactions of biomolecules involved in MLO formation are not fully understood. To address this knowledge gap, we investigated the effects of crowding on a model protein-polymer complex coacervate system. Specifically, we examined the influence of sucrose as a molecular crowder and polyethylene glycol (PEG) as a macromolecular crowder. Our results reveal that the presence of crowders led to the formation of larger coacervate droplets that remained stable over a 25-day period. While sucrose had a minimal effect on the physical properties of the coacervates, PEG led to the formation of coacervates with distinct characteristics, including higher density, increased protein and polymer content, and a more compact internal structure. These differences in coacervate properties can be attributed to the effects of crowders on individual macromolecules, such as the conformation of model polymers, and nonspecific interactions among model protein molecules. Moreover, our results show that sucrose and PEG have different partition behaviors: sucrose was present in both the coacervate and dilute phases, while PEG was observed to be excluded from the coacervate phase. Collectively, our findings provide insights into the understanding of crowding effects on complex coacervation, shedding light on the formation and properties of coacervates in the context of MLOs.
Collapse
Affiliation(s)
- Shanta Biswas
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Alison L Hecht
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Sadie A Noble
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Qingqiu Huang
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853, United States
| | - Richard E Gillilan
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853, United States
| | - Amy Y Xu
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
5
|
Quinn SD, Dresser L, Graham S, Conteduca D, Shepherd J, Leake MC. Crowding-induced morphological changes in synthetic lipid vesicles determined using smFRET. Front Bioeng Biotechnol 2022; 10:958026. [PMID: 36394015 PMCID: PMC9650091 DOI: 10.3389/fbioe.2022.958026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/13/2022] [Indexed: 12/02/2022] Open
Abstract
Lipid vesicles are valuable mesoscale molecular confinement vessels for studying membrane mechanics and lipid-protein interactions, and they have found utility among bio-inspired technologies, including drug delivery vehicles. While vesicle morphology can be modified by changing the lipid composition and introducing fusion or pore-forming proteins and detergents, the influence of extramembrane crowding on vesicle morphology has remained under-explored owing to a lack of experimental tools capable of capturing morphological changes on the nanoscale. Here, we use biocompatible polymers to simulate molecular crowding in vitro, and through combinations of FRET spectroscopy, lifetime analysis, dynamic light scattering, and single-vesicle imaging, we characterize how crowding regulates vesicle morphology. We show that both freely diffusing and surface-tethered vesicles fluorescently tagged with the DiI and DiD FRET pair undergo compaction in response to modest concentrations of sorbitol, polyethylene glycol, and Ficoll. A striking observation is that sorbitol results in irreversible compaction, whereas the influence of high molecular weight PEG-based crowders was found to be reversible. Regulation of molecular crowding allows for precise control of the vesicle architecture in vitro, with vast implications for drug delivery and vesicle trafficking systems. Furthermore, our observations of vesicle compaction may also serve to act as a mechanosensitive readout of extramembrane crowding.
Collapse
Affiliation(s)
- Steven D. Quinn
- School of Physics, Engineering and Technology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Lara Dresser
- School of Physics, Engineering and Technology, University of York, York, United Kingdom
| | - Sarah Graham
- School of Physics, Engineering and Technology, University of York, York, United Kingdom
| | - Donato Conteduca
- School of Physics, Engineering and Technology, University of York, York, United Kingdom
| | - Jack Shepherd
- School of Physics, Engineering and Technology, University of York, York, United Kingdom
- Department of Biology, University of York, York, United Kingdom
| | - Mark C. Leake
- School of Physics, Engineering and Technology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
- Department of Biology, University of York, York, United Kingdom
| |
Collapse
|
6
|
Wang Z, Qi J, Goddard JM. Concentrated sugar solutions protect lactase from thermal inactivation. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Kubbutat P, Kulozik U, Dombrowski J. Influence of interfacial characteristics and dielectric properties on foam structure preservation during microwave-assisted vacuum drying of whey protein isolate-maltodextrin dispersions. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Kubbutat P, Kulozik U. Interactions of sugar alcohol, di-saccharides and polysaccharides with polysorbate 80 as surfactant in the stabilization of foams. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Weilandt DR, Hatzimanikatis V. Particle-Based Simulation Reveals Macromolecular Crowding Effects on the Michaelis-Menten Mechanism. Biophys J 2019; 117:355-368. [PMID: 31311624 PMCID: PMC6701012 DOI: 10.1016/j.bpj.2019.06.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 05/28/2019] [Accepted: 06/07/2019] [Indexed: 12/31/2022] Open
Abstract
Many computational models for analyzing and predicting cell physiology rely on in vitro data collected in dilute and controlled buffer solutions. However, this can mislead models because up to 40% of the intracellular volume—depending on the organism, the physiology, and the cellular compartment—is occupied by a dense mixture of proteins, lipids, polysaccharides, RNA, and DNA. These intracellular macromolecules interfere with the interactions of enzymes and their reactants and thus affect the kinetics of biochemical reactions, making in vivo reactions considerably more complex than the in vitro data indicates. In this work, we present a new, to our knowledge, type of kinetics that captures and quantifies the effect of volume exclusion and other spatial phenomena on the kinetics of elementary reactions. We further developed a framework that allows for the efficient parameterization of these kinetics using particle simulations. Our formulation, entitled generalized elementary kinetics, can be used to analyze and predict the effect of intracellular crowding on enzymatic reactions and was herein applied to investigate the influence of crowding on phosphoglycerate mutase in Escherichia coli, which exhibits prototypical reversible Michaelis-Menten kinetics. Current research indicates that many enzymes are reaction limited and not diffusion limited, and our results suggest that the influence of fractal diffusion is minimal for these reaction-limited enzymes. Instead, increased association rates and decreased dissociation rates lead to a strong decrease in the effective maximal velocities Vmax and the effective Michaelis-Menten constants KM under physiologically relevant volume occupancies. Finally, the effects of crowding were explored in the context of a linear pathway, with the finding that crowding can have a redistributing effect on the effective flux responses in the case of twofold enzyme overexpression. We suggest that this framework, in combination with detailed kinetics models, will improve our understanding of enzyme reaction networks under nonideal conditions.
Collapse
Affiliation(s)
- Daniel R Weilandt
- Laboratory of Computational Systems Biotechnology, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
10
|
Crowded milieu tuning the stability and activity of stem bromelain. Int J Biol Macromol 2018; 109:114-123. [DOI: 10.1016/j.ijbiomac.2017.12.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 11/24/2022]
|
11
|
Acosta LC, Perez Goncalves GM, Pielak GJ, Gorensek-Benitez AH. Large cosolutes, small cosolutes, and dihydrofolate reductase activity. Protein Sci 2017; 26:2417-2425. [PMID: 28971539 DOI: 10.1002/pro.3316] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 11/06/2022]
Abstract
Protein enzymes are the main catalysts in the crowded and complex cellular interior, but their activity is almost always studied in dilute buffered solutions. Studies that attempt to recreate the cellular interior in vitro often utilize synthetic polymers as crowding agents. Here, we report the effects of the synthetic polymer cosolutes Ficoll, dextran, and polyvinylpyrrolidone, and their respective monomers, sucrose, glucose, and 1-ethyl-2-pyrrolidone, on the activity of the 18-kDa monomeric enzyme, Escherichia coli dihydrofolate reductase. At low concentrations, reductase activity increases relative to buffer and monomers, suggesting a macromolecular effect. However, the effect decreases at higher concentrations, approaching, and, in some cases, falling below buffer values. We also assessed activity in terms of volume occupancy, viscosity, and the overlap concentration (where polymers form an interwoven mesh). The trends vary with polymer family, but changes in activity are within threefold of buffer values. We also compiled and analyzed results from previous studies and conclude that alterations of steady-state enzyme kinetics in solutions crowded with synthetic polymers are idiosyncratic with respect to the crowding agent and enzyme.
Collapse
Affiliation(s)
| | | | - Gary J Pielak
- Department of Chemistry.,Department of Biochemistry and Biophysics.,Lineberger Comprehensive Cancer Center.,Integrative Program for Biological and Genome Sciences University of North Carolina, Chapel Hill, NC, 27599, USA
| | | |
Collapse
|
12
|
Soleimaninejad H, Chen MZ, Lou X, Smith TA, Hong Y. Measuring macromolecular crowding in cells through fluorescence anisotropy imaging with an AIE fluorogen. Chem Commun (Camb) 2017; 53:2874-2877. [DOI: 10.1039/c6cc09916e] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We report a new strategy that allows spatiotemporal visualization of the macromolecular crowding effect in cells.
Collapse
Affiliation(s)
| | - Moore Z. Chen
- School of Chemistry
- The University of Melbourne
- Parkville VIC 3010
- Australia
| | - Xiaoding Lou
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
| | - Trevor A. Smith
- School of Chemistry
- The University of Melbourne
- Parkville VIC 3010
- Australia
| | - Yuning Hong
- School of Chemistry
- The University of Melbourne
- Parkville VIC 3010
- Australia
- Department of Chemistry and Physics
| |
Collapse
|
13
|
Domain C of thermostable α-amylase of Geobacillus thermoleovorans mediates raw starch adsorption. Appl Microbiol Biotechnol 2014; 98:4503-19. [DOI: 10.1007/s00253-013-5459-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/28/2013] [Accepted: 12/08/2013] [Indexed: 10/25/2022]
|
14
|
Warmerdam A, Boom RM, Janssen AE. β-galactosidase stability at high substrate concentrations. SPRINGERPLUS 2013; 2:402. [PMID: 24024090 PMCID: PMC3765595 DOI: 10.1186/2193-1801-2-402] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 08/20/2013] [Indexed: 01/01/2023]
Abstract
Enzymatic synthesis of galacto-oligosaccharides is usually performed at high initial substrate concentrations since higher yields are obtained. We report here on the stability of β-galactosidase from Bacillus circulans at 25, 40, and 60°C in buffer, and in systems with initially 5.0 and 30% (w/w) lactose. In buffer, the half-life time was 220 h and 13 h at 25 and 40°C, respectively, whereas the enzyme was completely inactivated after two hours at 60°C. In systems with 5.0 and 30% (w/w) lactose, a mechanistic model was used to correct the oNPG converting activity for the presence of lactose, glucose, galactose, and oligosaccharides in the activity assay. Without correction, the stability at 5.0% (w/w) lactose was overestimated, while the stability at 30% (w/w) lactose was underestimated. The inactivation constant k d was strongly dependent on temperature in buffer, whereas only a slight increase in k d was found with temperature at high substrate concentrations. The enzyme stability was found to increase strongly with the initial substrate concentrations. The inactivation energy E a appeared to be lower at high initial substrate concentrations.
Collapse
Affiliation(s)
- Anja Warmerdam
- Food Process Engineering Group, Wageningen University, PO Box 8129, Wageningen, EV 6700 The Netherlands
| | | | | |
Collapse
|
15
|
Warmerdam A, Wang J, Boom RM, Janssen AEM. Effects of carbohydrates on the oNPG converting activity of β-galactosidases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:6458-6464. [PMID: 23725091 DOI: 10.1021/jf4008554] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The effects of high concentrations of carbohydrates on the o-nitrophenyl β-d-galactopyranoside (oNPG) converting activity of β-galactosidase from Bacillus circulans are studied to get a better understanding of the enzyme behavior in concentrated and complicated systems in which enzymatic synthesis of galacto-oligosaccharides is usually performed. The components that were tested were glucose, galactose, lactose, sucrose, trehalose, raffinose, Vivinal GOS, dextran-6000, dextran-70,000, and sarcosine. Small carbohydrates act as acceptors in the reaction. This speeds up the limiting step, which is binding of the galactose residue with the acceptor and release of the product. Simultaneously, both inert and reacting additives seem to cause some molecular crowding, which results in a higher enzyme affinity for the substrate. The effect of molecular crowding on the enzyme activity is small compared to the effect of carbohydrates acting in the reactions as acceptors. The effects of reactants on β-galactosidases from B. circulans, A. oryzae, and K. lactis are compared.
Collapse
Affiliation(s)
- Anja Warmerdam
- Food Process Engineering Group, Wageningen University, Bomenweg 2, 6703 HD, Wageningen, The Netherlands
| | | | | | | |
Collapse
|