1
|
Xie X, Fan L, Chen X, Luo Y, Chen H. The resting-state brain activity and connectivity mediates the effect of overt narcissism on negative physical self. Behav Brain Res 2025; 485:115546. [PMID: 40120946 DOI: 10.1016/j.bbr.2025.115546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Overt narcissism is a stable personality trait in which individuals maintain a relatively positive self-image through self-improvement. Previous studies have suggested that examining the neurobiological processes behind personality could help to understand the mechanism by which the personality acts as a risk or protective factor. However, there is a lack of research investigating the neural mechanisms underlying the influence of overt narcissism on negative physical self (NPS). This study evaluated the resting state brain activity (fractional amplitude of low-frequency fluctuations, fALFF) and connectivity (functional connectivity, FC) of 1647 college students. Whole brain correlation analysis showed that overt narcissism was positively correlated with fALFF in the left insula, left precentral gyrus (PreCG) and bilateral superior temporal gyrus (STG). Moreover, overt narcissism exhibited a significant positive correlation with the right STG-PreCG connectivity, and also was significantly positively correlated with FC between the left STG and posterior cingulate gyrus, the left orbitofrontal cortex, the right inferior frontal gyrus and the right thalamus. The results of mediating analysis showed that fALFF in the left PreCG and the right STG-PreCG connectivity partially mediated the effects of overt narcissism on general and facial appearance of NPS, respectively. This study constructed a model (i.e., overt narcissism→brain regions/FC→NPS), providing neurobiological evidence for the relationship between overt narcissism and NPS.
Collapse
Affiliation(s)
- Xiaowei Xie
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Linlin Fan
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Ximei Chen
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Yijun Luo
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Hong Chen
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing 400715, China; Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Orłowski P, Hobot J, Ruban A, Szczypiński J, Bola M. Naturalistic use of psychedelics does not modulate processing of self-related stimuli (but it might modulate attentional mechanisms): An event-related potentials study. Psychophysiology 2024; 61:e14583. [PMID: 38584307 DOI: 10.1111/psyp.14583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
Classic psychedelics are able to profoundly alter the state of consciousness and lead to acute experiences of ego dissolution - the blurring of the distinction between representations of self and the external world. However, whether repeated use of psychedelics is associated with more prolonged and permanent modifications to the concept of self remains to be investigated. Therefore, we conducted a preregistered, cross-sectional study in which experienced psychedelics users (15 or more lifetime experiences with psychedelics; N = 56) were compared to nonusers (N = 57) in terms of neural reactivity to a Self-name (i.e., each participant's own name) stimulus, which is known to robustly activate a representation of self. Two control stimuli were additionally used: an Other-name stimulus, as a passive control condition in which no reaction was required, and a Target-name stimulus, to which participants provided a manual response and which thus constituted an active control condition. Analysis of the amplitude of the P300 ERP component evoked by the Self- or Target-names revealed no difference between the psychedelics users and nonusers. However, psychedelic users exhibited increased P300 amplitude during perception of Other-names. In addition, in comparison to nonusers, psychedelics users exhibited a smaller increase in P300 amplitude when processing the task-relevant Target-names (in relation to both Self- and Other-names). Therefore, our data suggests that regular naturalistic use of psychedelics may not be related to long-term changes in the representation of self, but it might potentially affect the allocation of attentional resources to task-relevant stimuli.
Collapse
Affiliation(s)
- Paweł Orłowski
- Centre for Brain Research, Jagiellonian University, Kraków, Poland
- Doctoral School in the Social Sciences, Jagiellonian University, Kraków, Poland
| | - Justyna Hobot
- Consciousness Lab, Psychology Institute, Jagiellonian University, Kraków, Poland
| | - Anastasia Ruban
- Department of Psychology, SWPS University of Social Sciences and Humanities, Warsaw, Poland
| | - Jan Szczypiński
- Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland
| | - Michał Bola
- Centre for Brain Research, Jagiellonian University, Kraków, Poland
| |
Collapse
|
3
|
Ash S, Greenwood D, Keenan JP. The Neural Correlates of Narcissism: Is There a Connection with Desire for Fame and Celebrity Worship? Brain Sci 2023; 13:1499. [PMID: 37891865 PMCID: PMC10605183 DOI: 10.3390/brainsci13101499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Objective: Narcissism is characterized by emotional regulation deficits, a lack of empathy for others, and extreme self-focus. Narcissism has also been linked to an increased desire for fame and celebrity worship. Here, the neuroscience underlying narcissism is examined in order to determine what regions and networks of the brain are altered when non-narcissistic individuals are compared to participants with both grandiose and vulnerable narcissism. (2) Methods: The behavioral relationships between grandiose narcissism and desire for fame and vulnerable narcissism and celebrity worship are explored, along with a possible relationship at the neural level between these constructs. In this paper, we review research demonstrating that increased levels of grandiose narcissism are associated with an increase in obsession with fame, while vulnerable narcissism is associated with celebrity worship. (3) Results: Based on current data, the frontal regions underlie narcissism and also likely underlie celebrity worship and desire for fame. This tenuous conclusion is based on a limited number of studies. (4) Conclusions: The brain areas associated with grandiose narcissism may be associated with an intense desire for fame as well, while brain regions associated with vulnerable narcissism may be similar in celebrity worshipers. Future research studies on the brain that are specifically designed to test these relationships at a neurological level are needed.
Collapse
Affiliation(s)
- Sydney Ash
- Cognitive Neuroimaging Laboratory, Montclair State University, 320 Science Hall, Montclair, NJ 07043, USA
| | - Dara Greenwood
- Department of Psychology, Vassar College, Poughkeepsie, NY 12604, USA
| | - Julian Paul Keenan
- Cognitive Neuroimaging Laboratory, Montclair State University, 320 Science Hall, Montclair, NJ 07043, USA
| |
Collapse
|
4
|
Molnar-Szakacs I, Uddin LQ. Laterality and hemispheric specialization of self-face recognition. Neuropsychologia 2023; 186:108586. [PMID: 37236528 DOI: 10.1016/j.neuropsychologia.2023.108586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/21/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023]
Abstract
Inspired by the pioneering work of Eran Zaidel beginning in the early 1970's on the role of the two cerebral hemispheres of the human brain in self-related cognition, we review research on self-face recognition from a laterality perspective. The self-face is an important proxy of the self, and self-face recognition has been used as an indicator of self-awareness more broadly. Over the last half century, behavioral and neurological data, along with over two decades of neuroimaging research evidence have accumulated on this topic, generally concluding a right-hemisphere dominance for self-face recognition. In this review, we briefly revisit the pioneering roots of this work by Sperry, Zaidel & Zaidel, and focus on the important body of neuroimaging literature on self-face recognition it has inspired. We conclude with a brief discussion of current models of self-related processing and future directions for research in this area.
Collapse
Affiliation(s)
| | - Lucina Q Uddin
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, CA, USA; Department of Psychology, University of California Los Angeles, CA, USA.
| |
Collapse
|
5
|
Gainotti G, Keenan JP. Editorial: Emotional lateralization and psychopathology. Front Psychiatry 2023; 14:1231283. [PMID: 37457769 PMCID: PMC10338332 DOI: 10.3389/fpsyt.2023.1231283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 07/18/2023] Open
Affiliation(s)
- Guido Gainotti
- Institute of Neurology, Catholic University of the Sacred Heart, Fondazione Policlinico Gemelli, Rome, Italy
| | - Julian Paul Keenan
- Laboratory of Cognitive Neuroimaging, Montclair State University, Montclair, NJ, United States
| |
Collapse
|
6
|
Minervini A, LaVarco A, Zorns S, Propper R, Suriano C, Keenan JP. Excitatory Dorsal Lateral Prefrontal Cortex Transcranial Magnetic Stimulation Increases Social Anxiety. Brain Sci 2023; 13:989. [PMID: 37508921 PMCID: PMC10377502 DOI: 10.3390/brainsci13070989] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Social exclusion refers to the experience of rejection by one or more people during a social event and can induce pain-related sensations. Cyberball, a computer program, is one of the most common tools for analyzing social exclusion. Regions of the brain that underlie social pain include networks linked to the dorsal lateral prefrontal cortex (DLPFC). Specifically, self-directed negative socially induced exclusion is associated with changes in DLPFC activity. Direct manipulation of this area may provide a better understanding of how the DLPFC can influence the perception of social exclusion and determine a causal role of the DLPFC. Transcranial magnetic stimulation (TMS) was applied to both the left and right DLPFC to gauge different reactions to the Cyberball experience. It was found that there were elevated exclusion indices following right DLPFC rTMS; participants consistently felt more excluded when the right DLPFC was excited. This may relate to greater feelings of social pain when the right DLPFC is manipulated. These data demonstrate that direct manipulation of the DLPFC results in changes in responses to social exclusion.
Collapse
Affiliation(s)
- Anthony Minervini
- Cognitive Neuroimaging Laboratory, Montclair State University, Montclair, NJ 07043, USA
| | - Adriana LaVarco
- Cognitive Neuroimaging Laboratory, Montclair State University, Montclair, NJ 07043, USA
| | - Samantha Zorns
- Cognitive Neuroimaging Laboratory, Montclair State University, Montclair, NJ 07043, USA
| | - Ruth Propper
- Cognitive Neuroimaging Laboratory, Montclair State University, Montclair, NJ 07043, USA
| | - Christos Suriano
- Cognitive Neuroimaging Laboratory, Montclair State University, Montclair, NJ 07043, USA
| | - Julian Paul Keenan
- Cognitive Neuroimaging Laboratory, Montclair State University, Montclair, NJ 07043, USA
| |
Collapse
|
7
|
Yasin S, Fierst A, Keenan H, Knapp A, Gallione K, Westlund T, Kirschner S, Vaidya S, Qiu C, Rougebec A, Morss E, Lebiedzinski J, Dejean M, Keenan JP. Self-Enhancement and the Medial Prefrontal Cortex: The Convergence of Clinical and Experimental Findings. Brain Sci 2022; 12:1103. [PMID: 36009167 PMCID: PMC9405933 DOI: 10.3390/brainsci12081103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 12/02/2022] Open
Abstract
Self-enhancement (SE) is often overlooked as a fundamental cognitive ability mediated via the Prefrontal Cortex (PFC). Here, we present research that establishes the relationship between the PFC, SE, and the potential evolved beneficial mechanisms. Specifically, we believe there is now enough evidence to speculate that SE exists to provide significant benefits and should be considered a normal aspect of the self. Whatever the metabolic or social cost, the upside of SE is great enough that it is a core and fundamental psychological construct. Furthermore, though entirely theoretical, we suggest that a critical reason the PFC has evolved so significantly in Homo sapiens is to, in part, sustain SE. We, therefore, elaborate on its proximate and ultimate mechanisms.
Collapse
Affiliation(s)
- Saeed Yasin
- Department of Biology, Montclair State University, 320 Science Hall, Montclair, NJ 07043, USA
| | - Anjel Fierst
- Department of Biology, Montclair State University, 320 Science Hall, Montclair, NJ 07043, USA
| | - Harper Keenan
- Department of Biology, Montclair State University, 320 Science Hall, Montclair, NJ 07043, USA
| | - Amelia Knapp
- Department of Biology, Montclair State University, 320 Science Hall, Montclair, NJ 07043, USA
| | - Katrina Gallione
- Department of Biology, Montclair State University, 320 Science Hall, Montclair, NJ 07043, USA
| | - Tessa Westlund
- Department of Biology, Montclair State University, 320 Science Hall, Montclair, NJ 07043, USA
| | - Sydney Kirschner
- Department of Biology, Montclair State University, 320 Science Hall, Montclair, NJ 07043, USA
| | - Sahana Vaidya
- Department of Biology, Montclair State University, 320 Science Hall, Montclair, NJ 07043, USA
| | - Christina Qiu
- Department of Biology, Montclair State University, 320 Science Hall, Montclair, NJ 07043, USA
| | - Audrey Rougebec
- Department of Biology, Montclair State University, 320 Science Hall, Montclair, NJ 07043, USA
| | - Elodie Morss
- Department of Biology, Montclair State University, 320 Science Hall, Montclair, NJ 07043, USA
| | - Jack Lebiedzinski
- Department of Biology, Montclair State University, 320 Science Hall, Montclair, NJ 07043, USA
| | - Maya Dejean
- Department of Biology, Montclair State University, 320 Science Hall, Montclair, NJ 07043, USA
| | - Julian Paul Keenan
- Department of Biology, Montclair State University, 320 Science Hall, Montclair, NJ 07043, USA
- Cognitive Neuroimaging Laboratory, Department of Biology, Montclair State University, 320 Science Hall, Montclair, NJ 07043, USA
| |
Collapse
|
8
|
LaVarco A, Ahmad N, Archer Q, Pardillo M, Nunez Castaneda R, Minervini A, Keenan JP. Self-Conscious Emotions and the Right Fronto-Temporal and Right Temporal Parietal Junction. Brain Sci 2022; 12:brainsci12020138. [PMID: 35203902 PMCID: PMC8869976 DOI: 10.3390/brainsci12020138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
For more than two decades, research focusing on both clinical and non-clinical populations has suggested a key role for specific regions in the regulation of self-conscious emotions. It is speculated that both the expression and the interpretation of self-conscious emotions are critical in humans for action planning and response, communication, learning, parenting, and most social encounters. Empathy, Guilt, Jealousy, Shame, and Pride are all categorized as self-conscious emotions, all of which are crucial components to one’s sense of self. There has been an abundance of evidence pointing to the right Fronto-Temporal involvement in the integration of cognitive processes underlying the expression of these emotions. Numerous regions within the right hemisphere have been identified including the right temporal parietal junction (rTPJ), the orbitofrontal cortex (OFC), and the inferior parietal lobule (IPL). In this review, we aim to investigate patient cases, in addition to clinical and non-clinical studies. We also aim to highlight these specific brain regions pivotal to the right hemispheric dominance observed in the neural correlates of such self-conscious emotions and provide the potential role that self-conscious emotions play in evolution.
Collapse
|
9
|
Abstract
While the desire to uncover the neural correlates of consciousness has taken numerous directions, self-face recognition has been a constant in attempts to isolate aspects of self-awareness. The neuroimaging revolution of the 1990s brought about systematic attempts to isolate the underlying neural basis of self-face recognition. These studies, including some of the first fMRI (functional magnetic resonance imaging) examinations, revealed a right-hemisphere bias for self-face recognition in a diverse set of regions including the insula, the dorsal frontal lobe, the temporal parietal junction, and the medial temporal cortex. In this systematic review, we provide confirmation of these data (which are correlational) which were provided by TMS (transcranial magnetic stimulation) and patients in which direct inhibition or ablation of right-hemisphere regions leads to a disruption or absence of self-face recognition. These data are consistent with a number of theories including a right-hemisphere dominance for self-awareness and/or a right-hemisphere specialization for identifying significant social relationships, including to oneself.
Collapse
|