1
|
Hong JK, Sook Jo Y, Jeong DH, Woo SM, Park JY, Yoon DJ, Lee YH, Choi SH, Park CJ. Vapours from plant essential oils to manage tomato grey mould caused by Botrytis cinerea. Fungal Biol 2023; 127:985-996. [PMID: 37024158 DOI: 10.1016/j.funbio.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 01/24/2023] [Accepted: 02/15/2023] [Indexed: 03/11/2023]
Abstract
Tomato grey mould has been a great concern during tomato production. The in vitro antifungal activity of vapours emitted from four plant essential oils (EOs) (cinnamon oil, fennel oil, origanum oil, and thyme oil) were evaluated during in vitro conidial germination and mycelial growth of Botrytis cinerea, the causal agent of grey mould. Cinnamon oil vapour was the most effective in suppressing conidial germination, whereas the four EOs showed similar activities regarding inhibiting mycelial growth in dose-dependent manners. The in planta protection effect of the four EO vapours was also investigated by measuring necrotic lesions on tomato leaves inoculated by B. cinerea. Grey mould lesions on the inoculated leaves were reduced by the vapours from cinnamon oil, origanum oil and thyme oil at different levels, but fennel oil did not limit the spread of the necrotic lesions. Decreases in cuticle defect, lipid peroxidation, and hydrogen peroxide production in the B. cinerea-inoculated leaves were correlated with reduced lesions by the cinnamon oil vapours. The reduced lesions by the cinnamon oil vapour were well matched with arrested fungal proliferation on the inoculated leaves. The cinnamon oil vapour regulated tomato defence-related gene expression in the leaves with or without fungal inoculation. These results suggest that the plant essential oil vapours, notably cinnamon oil vapour, can provide eco-friendly alternatives to manage grey mould during tomato production.
Collapse
|
2
|
Nowacka A, Olejniczak A, Stachowiak W, Niemczak M. Comprehensive Ecotoxicity Studies on Quaternary Ammonium Salts Synthesized from Vitamin B 3 Supported by QSAR Calculations. PLANTS (BASEL, SWITZERLAND) 2023; 12:914. [PMID: 36840262 PMCID: PMC9960687 DOI: 10.3390/plants12040914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Lately, ionic forms (namely, quaternary ammonium salts, QASs) of nicotinamide, widely known as vitamin B3, are gaining popularity in the sectors developing novel pharmaceuticals and agrochemicals. However, the direct influence of these unique QASs on the development of various terrestrial plants, as well as other organisms, remains unknown. Therefore, three compounds comprising short, medium, and long alkyl chains in N-alkylnicotinamide were selected for phytotoxicity analyses, which were conducted on representative dicotyledonous (white mustard) and monocotyledonous (sorghum) plants. The study allowed the determination of the impact of compounds on the germination capacity as well as on the development of roots and stems of the tested plants. Interestingly, independently of the length of the alkyl chain or plant species, all QASs were established as non-phytotoxic. In addition, QSAR simulations, performed using the EPI Suite™ program pack, allowed the determination of the products' potential toxicity toward fish, green algae, and daphnids along with the susceptibility to biodegradation. The obtained nicotinamide derivative with the shortest chain (butyl) can be considered practically non-toxic according to GHS criteria, whereas salts with medium (decyl) and longest (hexadecyl) substituent were included in the 'acute II' toxicity class. These findings were supported by the results of the toxicity tests performed on the model aquatic plant Lemna minor. It should be stressed that all synthesized salts exhibit not only a lack of potential for bioaccumulation but also lower toxicity than their fully synthetic analogs.
Collapse
Affiliation(s)
| | | | | | - Michał Niemczak
- Faculty of Chemical Technology, Poznan University of Technology, 60-965 Poznan, Poland
| |
Collapse
|
3
|
García-Machado FJ, García-García AL, Borges AA, Jiménez-Arias D. Root treatment with a vitamin K 3 derivative: a promising alternative to synthetic fungicides against Botrytis cinerea in tomato plants. PEST MANAGEMENT SCIENCE 2022; 78:974-981. [PMID: 34738317 DOI: 10.1002/ps.6707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Botrytis cinerea, the causal agent of gray mold has a great economic impact on several important crops. This necrotrophic fungus causes disease symptoms during vegetative growth and also into postharvest stages. The current method to combat this disease is fungicide application, with high economic costs and environmentally unsustainable impacts. Moreover, there is an increasing general public health concern about these strategies of crop protection. We studied the protection of tomato plants against B. cinerea by previous root treatment with menadione sodium bisulfite (MSB), a known plant defense activator. RESULTS Root treatment 48 h before inoculation with MSB 0.6 mmol L-1 reduced leaf lesion diameter by 30% and notably cell deaths, compared to control plants 72 h after inoculation. We studied the expression level of several pathogenesis-related (PR) genes from different defense transduction pathways, and found that MSB primes higher PR1 expression against B. cinerea. However, this stronger induced resistance was impaired in transgenic salicylic acid-deficient NahG line. Additionally, in the absence of pathogen challenge, MSB increased tomato plant growth by 28% after 10 days. Our data provide evidence that MSB protects tomato plants against B. cinerea by priming defense responses through the salicylic acid (SA)-dependent signaling pathway and reducing oxidative stress. CONCLUSION This work confirms the efficacy of MSB as plant defense activator against B. cinerea and presents a novel alternative to combat gray mold in important crops.
Collapse
Affiliation(s)
- Francisco J García-Machado
- Chemical Plant Defense Activators Group, Department of Life and Earth Sciences, IPNA-CSIC, Campus de Anchieta, La Laguna, Tenerife, Spain
- Applied Plant Biology Group, Department of Botany, Plant Physiology and Genetics. Universidad de La Laguna, Campus de Anchieta, La Laguna, Tenerife, Spain
| | - Ana L García-García
- Chemical Plant Defense Activators Group, Department of Life and Earth Sciences, IPNA-CSIC, Campus de Anchieta, La Laguna, Tenerife, Spain
- Applied Plant Biology Group, Department of Botany, Plant Physiology and Genetics. Universidad de La Laguna, Campus de Anchieta, La Laguna, Tenerife, Spain
| | - Andrés A Borges
- Chemical Plant Defense Activators Group, Department of Life and Earth Sciences, IPNA-CSIC, Campus de Anchieta, La Laguna, Tenerife, Spain
| | - David Jiménez-Arias
- Chemical Plant Defense Activators Group, Department of Life and Earth Sciences, IPNA-CSIC, Campus de Anchieta, La Laguna, Tenerife, Spain
| |
Collapse
|
4
|
Amaral J, Lamelas L, Valledor L, Castillejo MÁ, Alves A, Pinto G. Comparative proteomics of Pinus-Fusarium circinatum interactions reveal metabolic clues to biotic stress resistance. PHYSIOLOGIA PLANTARUM 2021; 173:2142-2154. [PMID: 34537969 DOI: 10.1111/ppl.13563] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/02/2021] [Accepted: 09/15/2021] [Indexed: 05/24/2023]
Abstract
Fusarium circinatum, causing pine pitch canker (PPC), affects conifers productivity and health worldwide. Selection and breeding for resistance arises as the most promising approach to fight PPC. Therefore, it is crucial to explore the response of hosts with varying levels of susceptibility to PPC to unveil the genes/pathways behind these phenotypes. We evaluated the dynamics of the needle proteome of a susceptible (Pinus radiata) and a relatively resistant (Pinus pinea) species upon F. circinatum inoculation by GeLC-MS/MS. Integration with physiological data and validation of key genes by qPCR allowed to identify core pathways regulating these contrasting responses. In P. radiata, the pathogen may target both the secondary metabolism to negatively regulate immune response and chloroplast redox proteins to increase energy-producing pathways for amino acid production in its favour. In contrast, chloroplast redox regulation may assure redox homeostasis in P. pinea, as well as nonenzymatic antioxidants. The presence of membrane trafficking-related proteins exclusively in P. pinea likely explains its defence response against F. circinatum. A crosstalk between abscisic acid and epigenetic regulation of gene expression is also proposed in PPC response. These results are useful to support breeding programs aiming to achieve PPC resistance.
Collapse
Affiliation(s)
- Joana Amaral
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Laura Lamelas
- Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, Oviedo, Asturias, Spain
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, Oviedo, Asturias, Spain
| | - María Ángeles Castillejo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, Cordoba, Spain
| | - Artur Alves
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Glória Pinto
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
5
|
Park BR, Son HJ, Park JH, Kim ES, Heo SJ, Youn HR, Koo YM, Heo AY, Choi HW, Sang MK, Lee SW, Choi SH, Hong JK. Chemical Fungicides and Bacillus siamensis H30-3 against Fungal and Oomycete Pathogens Causing Soil-Borne Strawberry Diseases. THE PLANT PATHOLOGY JOURNAL 2021; 37:79-85. [PMID: 33551699 PMCID: PMC7847756 DOI: 10.5423/ppj.nt.12.2020.0232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 06/08/2023]
Abstract
Chemical and biological agents were evaluated to inhibit Colletotrichum fructicola, Phytophthora cactorum, and Lasiodiplodia theobromae causing strawberry diseases. Mycelial growths of C. fructicola were gradually arrested by increasing concentrations of fungicides pyraclostrobin and iminoctadine tris (albesilate). P. cactorum and L. theobromae were more sensitive to pyraclostrobin compared to C. fructicola, but iminoctadine tris (albesilate) was not or less effective to limit P. cactorum or L. theobromae, respectively. Bacillus siamensis H30-3 was antagonistic against the three pathogens by diffusible as well as volatile molecules, and evidently reduced aerial mycelial formation of P. cactorum. B. siamensis H30-3 growth was declined by at least 0.025 mg/ml of pyraclostrobin. The two fungicides additively inhibited mycelial growths of C. fructicola, but not of P. cactorum and L. theobromae. B. siamensis H30-3 volatiles led to less growth of C. fructicola than one reduced by the fungicides. Taken together, in vitro antimicrobial activities of the two fungicides together with or without B. siamensis H30-3 volatiles may be cautiously incorporated into integrated management of strawberry diseases dependent on causal pathogens.
Collapse
Affiliation(s)
- Bo Reen Park
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), Jinju 52725, Korea
| | - Hyun Jin Son
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), Jinju 52725, Korea
| | - Jong Hyeob Park
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), Jinju 52725, Korea
| | - Eun Soo Kim
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), Jinju 52725, Korea
| | - Seong Jin Heo
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), Jinju 52725, Korea
| | - Hae Ree Youn
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), Jinju 52725, Korea
| | - Young Mo Koo
- Department of Plant Medicine, Andong National University, Andong 3679, Korea
| | - A Yeong Heo
- Department of Plant Medicine, Andong National University, Andong 3679, Korea
| | - Hyong Woo Choi
- Department of Plant Medicine, Andong National University, Andong 3679, Korea
| | - Mee Kyung Sang
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju 5565, Korea
| | - Sang-Woo Lee
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), Jinju 52725, Korea
| | - Sung Hwan Choi
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), Jinju 52725, Korea
| | - Jeum Kyu Hong
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), Jinju 52725, Korea
| |
Collapse
|
6
|
Jo YS, Park HB, Kim JY, Choi SM, Lee DS, Kim DH, Lee YH, Park CJ, Jeun YC, Hong JK. Menadione Sodium Bisulfite-Protected Tomato Leaves against Grey Mould via Antifungal Activity and Enhanced Plant Immunity. THE PLANT PATHOLOGY JOURNAL 2020; 36:335-345. [PMID: 32788892 PMCID: PMC7403521 DOI: 10.5423/ppj.oa.06.2020.0113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 05/21/2023]
Abstract
Tomato grey mould has been one of the destructive fungal diseases during tomato production. Ten mM of menadione sodium bisulfite (MSB) was applied to tomato plants for eco-friendly control of the grey mould. MSB-reduced tomato grey mould in the 3rd true leaves was prolonged at least 7 days prior to the fungal inoculation of two inoculum densities (2 × 104 and 2 × 105 conidia/ml) of Botrytis cinerea. Protection efficacy was significantly higher in the leaves inoculated with the lower disease pressure of conidial suspension compared to the higher one. MSB-pretreatment was not effective to arrest oxalic acid-triggered necrosis on tomato leaves. Plant cell death and hydrogen peroxide accumulation were restricted in necrotic lesions of the B. cinereainoculated leaves by the MSB-pretreatment. Decreased conidia number and germ-tube elongation of B. cinerea were found at 10 h, and mycelial growth was also impeded at 24 h on the MSB-pretreated leaves. MSBmediated disease suppressions were found in cotyledons and different positions (1st to 5th) of true leaves inoculated with the lower conidial suspension, but only 1st to 3rd true leaves showed decreases in lesion sizes by the higher inoculum density. Increasing MSB-pretreatment times more efficiently decreased the lesion size by the higher disease pressure. MSB led to inducible expressions of defence-related genes SlPR1a, SlPR1b, SlPIN2, SlACO1, SlChi3, and SlChi9 in tomato leaves prior to B. cinerea infection. These results suggest that MSB pretreatment can be a promising alternative to chemical fungicides for environment-friendly management of tomato grey mould.
Collapse
Affiliation(s)
- Youn Sook Jo
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), Jinju 52725, Korea
| | - Hye Bin Park
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), Jinju 52725, Korea
| | - Ji Yun Kim
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), Jinju 52725, Korea
| | - Seong Min Choi
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), Jinju 52725, Korea
| | - Da Sol Lee
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), Jinju 52725, Korea
| | - Do Hoon Kim
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), Jinju 52725, Korea
| | - Young Hee Lee
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), Jinju 52725, Korea
| | - Chang-Jin Park
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea
| | - Yong-Chull Jeun
- College of Applied Life Science, Faculty of Bioscience and Industry, The Research Institute for Subtropical Agriculture and Biotechnology, Jeju National University, Jeju 63243, Korea
| | - Jeum Kyu Hong
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), Jinju 52725, Korea
- Corresponding author. Phone) +82-55-751-3251, FAX) +82-55-751-3257, E-mail) , ORCID, Jeum Kyu Hong, https://orcid.org/0000-0002-9161-511X
| |
Collapse
|
7
|
Zhang S, Jain M, Fleites LA, Rayside PA, Gabriel DW. Identification and Characterization of Menadione and Benzethonium Chloride as Potential Treatments of Pierce's Disease of Grapevines. PHYTOPATHOLOGY 2019; 109:233-239. [PMID: 30407880 DOI: 10.1094/phyto-07-18-0244-fi] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Xylella fastidiosa infects a wide range of plant hosts and causes Pierce's disease (PD) of grapevines. The type 1 multidrug resistance (MDR) efflux system is essential for pathogenicity and survival of bacterial pathogens in planta. X. fastidiosa, with a single MDR system, is significantly more vulnerable to inhibition by small-molecule treatments than most bacterial pathogens that typically carry redundant MDR systems. A high-throughput cell viability assay using a green fluorescent protein-marked strain of X. fastidiosa Temecula 1 was developed to screen two Prestwick combinatorial small-molecule libraries of drugs and phytochemicals (1,600 chemicals in total) approved by the Food and Drug Administration and European Medicines Agency for cell growth inhibition. The screens revealed 215 chemicals that inhibited bacterial growth by >50% at 50 µM concentrations. Seven chemicals proved to lyse X. fastidiosa cells at 25 µM, including four phytochemicals. Menadione (2-methyl-1,4-naphthoquinone, vitamin K) from the phytochemical library and benzethonium chloride (a topical disinfectant) from the chemical library both showed significant bactericidal activity against X. fastidiosa. Both menadione and benzethonium chloride foliar spray (15 and 5 mM, respectively) and soil drench (5 and 25 mM, respectively) treatments were equally effective in reducing PD symptoms by 54 to 59% and revealed that the effects of both chemical treatments became systemic. However, menadione was phytotoxic when applied as a foliar spray at effective concentrations, causing significant loss of photosynthetic capacity.
Collapse
Affiliation(s)
- S Zhang
- Department of Plant Pathology, University of Florida, Gainesville 32611
| | - M Jain
- Department of Plant Pathology, University of Florida, Gainesville 32611
| | - L A Fleites
- Department of Plant Pathology, University of Florida, Gainesville 32611
| | - P A Rayside
- Department of Plant Pathology, University of Florida, Gainesville 32611
| | - D W Gabriel
- Department of Plant Pathology, University of Florida, Gainesville 32611
| |
Collapse
|
8
|
Feng X, Yang S, Tang K, Zhang Y, Leng J, Ma J, Wang Q, Feng X. GmPGL1, a Thiamine Thiazole Synthase, Is Required for the Biosynthesis of Thiamine in Soybean. FRONTIERS IN PLANT SCIENCE 2019; 10:1546. [PMID: 31824549 PMCID: PMC6883718 DOI: 10.3389/fpls.2019.01546] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/05/2019] [Indexed: 05/21/2023]
Abstract
Thiamine is an essential cofactor in several enzymatic reactions for all living organisms. Animals cannot synthesize thiamine and depend on their diet. Enhancing the content of thiamine is one of the most important goals of plant breeding to solve the thiamine deficiency associated with the low-thiamin staple crops. In this study, a Glycine max pale green leaf 1 (Gmpgl1) mutant was isolated from the EMS mutagenized population of soybean cultivar, Williams 82. Map-based cloning of the GmPGL1 locus revealed a single nucleotide deletion at the 292th nucleotide residue of the first exon of Glyma.10g251500 gene in Gmpgl1 mutant plant, encoding a thiamine thiazole synthase. Total thiamine contents decreased in both seedlings and seeds of the Gmpgl1 mutant. Exogenous application of thiazole restored the pale green leaf phenotype of the mutant. The deficiency of thiamine in Gmpgl1 mutant led to reduced activities of the pyruvate dehydrogenase (PDH) and pyruvate decarboxylase (PDC), and decreased contents of six amino acids as compared to that in the wild type plants. These results revealed that GmPGL1 played an essential role in thiamine thiazole biosynthesis.
Collapse
Affiliation(s)
- Xingxing Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of eography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Suxin Yang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of eography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
- *Correspondence: Suxin Yang,
| | - Kuanqiang Tang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of eography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yaohua Zhang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of eography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
| | - Jiantian Leng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of eography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
| | - Jingjing Ma
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of eography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Quan Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of eography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of eography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
9
|
Hong JK, Jang SJ, Lee YH, Jo YS, Yun JG, Jo H, Park CJ, Kim HJ. Reduced Bacterial Wilt in Tomato Plants by Bactericidal Peroxyacetic Acid Mixture Treatment. THE PLANT PATHOLOGY JOURNAL 2018; 34:78-84. [PMID: 29422791 PMCID: PMC5796753 DOI: 10.5423/ppj.nt.06.2017.0131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/18/2017] [Accepted: 10/27/2017] [Indexed: 06/08/2023]
Abstract
Peroxyacetic acid mixture Perosan, composed of peroxyacetic acid, hydrogen peroxide and acetic acid, was evaluated for eco-friendly management of tomato bacterial wilt by Ralstonia pseudosolanacearum. Perosan drastically suppressed in vitro growth of R. pseudosolanacearum in liquid cultures in dose- and incubation time-dependent manners. Higher perosan doses (0.1 and 1%) caused lowered pH and phytotoxicity to detached leaves of two tomato cultivars Cupirang and Benekia 220 in aqueous solution. Treatment with 0.01% of Perosan delayed wilting symptom significantly in the detached leaves of two cultivars inoculated with R. pseudosolanacearum (107 cfu/ml). Soil drenching of 5% Perosan solution in pots caused severe tissue collapse of tomato seedlings at the four-week-old stage of two tomato cultivars. Treatment with 1% Perosan by soil-drenching significantly reduced bacterial wilt in the tomato seedlings of two cultivars. These findings suggest that Perosan treatment can be applied to suppress bacterial wilt during tomato production.
Collapse
Affiliation(s)
- Jeum Kyu Hong
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), Jinju 52725,
Korea
| | - Su Jeong Jang
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), Jinju 52725,
Korea
| | - Young Hee Lee
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), Jinju 52725,
Korea
| | - Yeon Sook Jo
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), Jinju 52725,
Korea
| | - Jae Gill Yun
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), Jinju 52725,
Korea
| | - Hyesu Jo
- Department of Bioresources Engineering and PERI, Sejong University, Seoul 05006,
Korea
| | - Chang-Jin Park
- Department of Bioresources Engineering and PERI, Sejong University, Seoul 05006,
Korea
| | - Hyo Joong Kim
- Institute of Technology, Daesung C&S Co., Ltd., Seoul 08504,
Korea
| |
Collapse
|