1
|
Zhao Z, Yang L, Long J, Chang Z, Chen X. Predicting suitable areas for Metcalfa pruinosa (Hemiptera: Flatidae) under climate change and implications for management. JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:7. [PMID: 38717262 PMCID: PMC11078062 DOI: 10.1093/jisesa/ieae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/08/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024]
Abstract
Climate change is a prominent factor reshaping the distribution of invasive species. Metcalfa pruinosa (Say 1830) (Hemiptera: Flatidae), native to North America, has invaded other continents and poses a serious threat to various agricultural crops and the human residential environment. Understanding the distribution of M. pruinosa based on climatic conditions is a critical first step to prevent its further invasion. Therefore, based on its occurrence records and associated environmental variables, a Maxent model was developed to predict suitable areas for this species in the present and future on a global scale. The model exhibited outstanding performance, with a mean area under the receiver operating characteristic curve and true skill statistic values of 0.9329 and 0.926, respectively. The model also indicated that annual precipitation (Bio12) and max temperature of the warmest month (Bio5) were the key environmental variables limiting the distribution of M. pruinosa. Moreover, the model revealed that the current suitable area is 1.01 × 107 km2 worldwide, with southern China, southern Europe, and the eastern United States predicted to be the primary and highly suitable areas in the latter 2 regions. This area is expected to increase under future climate scenarios, mainly in the northern direction. The study's findings contribute to our understanding of climate change's impact on M. pruinosa distribution, and they will aid governments in developing appropriate pest management strategies, including global monitoring and strict quarantine measures.
Collapse
Affiliation(s)
- Zhengxue Zhao
- Institute of Entomology, College of Agriculture, Guizhou University, Guiyang 550025, PR China
- Provincial Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, College of Agriculture, Guizhou University, Guiyang 550025, PR China
- Guizhou Key Laboratory for Agricultural Pest Management of Mountainous Region, College of Agriculture, Guizhou University, Guiyang 550025, PR China
- Key Laboratory of High-efficiency Agricultural Plant Protection Informatization in Central Guizhou, College of Agriculture, Anshun University, Anshun 561000, PR China
| | - Lin Yang
- Institute of Entomology, College of Agriculture, Guizhou University, Guiyang 550025, PR China
- Provincial Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, College of Agriculture, Guizhou University, Guiyang 550025, PR China
- Guizhou Key Laboratory for Agricultural Pest Management of Mountainous Region, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Jiankun Long
- Institute of Entomology, College of Agriculture, Guizhou University, Guiyang 550025, PR China
- Provincial Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, College of Agriculture, Guizhou University, Guiyang 550025, PR China
- Guizhou Key Laboratory for Agricultural Pest Management of Mountainous Region, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Zhimin Chang
- Institute of Entomology, College of Agriculture, Guizhou University, Guiyang 550025, PR China
- Provincial Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, College of Agriculture, Guizhou University, Guiyang 550025, PR China
- Guizhou Key Laboratory for Agricultural Pest Management of Mountainous Region, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Xiangsheng Chen
- Institute of Entomology, College of Agriculture, Guizhou University, Guiyang 550025, PR China
- Provincial Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, College of Agriculture, Guizhou University, Guiyang 550025, PR China
- Guizhou Key Laboratory for Agricultural Pest Management of Mountainous Region, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| |
Collapse
|
2
|
Wang B, Guo Y, Chen X, Ma J, Lei X, Wang W, Long Y. Assessment of the Biocontrol Potential of Bacillus velezensis WL-23 against Kiwifruit Canker Caused by Pseudomonas syringae pv. actinidiae. Int J Mol Sci 2023; 24:11541. [PMID: 37511299 PMCID: PMC10380555 DOI: 10.3390/ijms241411541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Kiwifruit canker disease, caused by Pseudomonas syringae pv. actinidiae (Psa), is the main threat to kiwifruit production worldwide. Currently, there is no safe and effective disease prevention method; therefore, biological control technologies are being explored for Psa. In this study, Bacillus velezensis WL-23 was isolated from the leaf microbial community of kiwifruit and used to control kiwifruit cankers. Indoor confrontation experiments showed that both WL-23 and its aseptic filtrate had excellent inhibitory activity against the main fungal and bacterial pathogens of kiwifruit. Changes in OD600, relative conductivity, alkaline proteinase, and nucleic acid content were recorded during Psa growth after treatment with the aseptic filtrate, showing that Psa proliferation was inhibited and the integrity of the cell membrane was destroyed; this was further verified using scanning electron microscopy and transmission electron microscopy. In vivo, WL-23 promoted plant growth, increased plant antioxidant enzyme activity, and reduced canker incidence. Therefore, WL-23 is expected to become a biological control agent due to its great potential to contribute to sustainable agriculture.
Collapse
Affiliation(s)
- Bingce Wang
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Yushan Guo
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Xuetang Chen
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Jiling Ma
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Xia Lei
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Weizhen Wang
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Youhua Long
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
| |
Collapse
|
3
|
Tibbs-Cortes LE, Tibbs-Cortes BW, Schmitz-Esser S. Tardigrade Community Microbiomes in North American Orchards Include Putative Endosymbionts and Plant Pathogens. Front Microbiol 2022; 13:866930. [PMID: 35923389 PMCID: PMC9340075 DOI: 10.3389/fmicb.2022.866930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/20/2022] [Indexed: 11/27/2022] Open
Abstract
The microbiome of tardigrades, a phylum of microscopic animals best known for their ability to survive extreme conditions, is poorly studied worldwide and completely unknown in North America. An improved understanding of tardigrade-associated bacteria is particularly important because tardigrades have been shown to act as vectors of the plant pathogen Xanthomonas campestris in the laboratory. However, the potential role of tardigrades as reservoirs and vectors of phytopathogens has not been investigated further. This study analyzed the microbiota of tardigrades from six apple orchards in central Iowa, United States, and is the first analysis of the microbiota of North American tardigrades. It is also the first ever study of the tardigrade microbiome in an agricultural setting. We utilized 16S rRNA gene amplicon sequencing to characterize the tardigrade community microbiome across four contrasts: location, substrate type (moss or lichen), collection year, and tardigrades vs. their substrate. Alpha diversity of the tardigrade community microbiome differed significantly by location and year of collection but not by substrate type. Our work also corroborated earlier findings, demonstrating that tardigrades harbor a distinct microbiota from their environment. We also identified tardigrade-associated taxa that belong to genera known to contain phytopathogens (Pseudomonas, Ralstonia, and the Pantoea/Erwinia complex). Finally, we observed members of the genera Rickettsia and Wolbachia in the tardigrade microbiome; because these are obligate intracellular genera, we consider these taxa to be putative endosymbionts of tardigrades. These results suggest the presence of putative endosymbionts and phytopathogens in the microbiota of wild tardigrades in North America.
Collapse
Affiliation(s)
- Laura E. Tibbs-Cortes
- Department of Agronomy, Iowa State University, Ames, IA, United States
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA, United States
- *Correspondence: Laura E. Tibbs-Cortes,
| | - Bienvenido W. Tibbs-Cortes
- Department of Animal Science, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| | - Stephan Schmitz-Esser
- Department of Animal Science, Iowa State University, Ames, IA, United States
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, United States
| |
Collapse
|
4
|
Coolen S, van der Molen MR, Welte CU. The secret life of insect-associated microbes and how they shape insect-plant interactions. FEMS Microbiol Ecol 2022; 98:6643329. [PMID: 35830517 PMCID: PMC9409087 DOI: 10.1093/femsec/fiac083] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/14/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
Insects are associated with a plethora of different microbes of which we are only starting to understand their role in shaping insect–plant interactions. Besides directly benefitting from symbiotic microbial metabolism, insects obtain and transmit microbes within their environment, making them ideal vectors and potential beneficiaries of plant diseases and microbes that alter plant defenses. To prevent damage, plants elicit stress-specific defenses to ward off insects and their microbiota. However, both insects and microbes harbor a wealth of adaptations that allow them to circumvent effective plant defense activation. In the past decades, it has become apparent that the enormous diversity and metabolic potential of insect-associated microbes may play a far more important role in shaping insect–plant interactions than previously anticipated. The latter may have implications for the development of sustainable pest control strategies. Therefore, this review sheds light on the current knowledge on multitrophic insect–microbe–plant interactions in a rapidly expanding field of research.
Collapse
Affiliation(s)
- Silvia Coolen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, The Netherlands
| | - Magda Rogowska- van der Molen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, The Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
5
|
The Potential Global Climate Suitability of Kiwifruit Bacterial Canker Disease (Pseudomonas syringae pv. actinidiae (Psa)) Using Three Modelling Approaches: CLIMEX, Maxent and Multimodel Framework. CLIMATE 2022. [DOI: 10.3390/cli10020014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In recent years, outbreaks of kiwifruit bacterial canker (Pseudomonas syringae pv. actinidiae Psa) have caused huge economic losses to two major global kiwifruit producers, Italy and New Zealand. To evaluate the potential global risk areas of Psa, three modelling methods (MaxEnt, CLIMEX and a multimodel framework, including support vector machines or SVM) were used. Current global occurrence data for Psa were collected from different sources. The long-term climate data were sourced from WorldClim and CliMond websites. The model results were combined into a consensus model to identify the hotspots. The consensus model highlighted the areas where two or three models agreed on climate suitability for Psa. All three models agreed with respect to the climate suitability of areas where Psa is currently present and identified novel areas where Psa has not established yet. The SVM model predicted large areas in Central Asia, Australia, and Europe as more highly suitable compared to MaxEnt and CLIMEX. Annual mean temperature and annual precipitation contributed most to the MaxEnt prediction. Both MaxEnt and CLIMEX showed the probability of Psa establishment increased above 5 °C and decreased above 20 °C. The annual precipitation response curve showed that excessive rain (>1200 mm/y) constrains Psa establishment. Our modelling results will provide useful information for Psa management by highlighting the climatically susceptible areas where Psa has not established, such as the USA, Iran, Denmark, Belgium and especially South Africa, where kiwifruit has been planted commercially in recent years.
Collapse
|
6
|
Taxonomic review of the family Flatidae (Hemiptera: Auchenorrhyncha: Fulgoroidea) from Korea. JOURNAL OF ASIA-PACIFIC BIODIVERSITY 2021. [DOI: 10.1016/j.japb.2021.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
7
|
Francati S, Masetti A, Martinelli R, Mirandola D, Anteghini G, Busi R, Dalmonte F, Spinelli F, Burgio G, Dindo ML. Halyomorpha halys (Hemiptera: Pentatomidae) on Kiwifruit in Northern Italy: Phenology, Infestation, and Natural Enemies Assessment. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1733-1742. [PMID: 34224560 DOI: 10.1093/jee/toab126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Indexed: 06/13/2023]
Abstract
The brown marmorated stink bug (BMSB), Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), is an Asian invasive plant-feeding insect and an emerging kiwifruit pest. Knowledge about the BMSB dynamics and damage to kiwifruit outside the bug native range is scarce. This 2-yr study was aimed at describing phenology and infestation dynamics of BMSB in green-fleshed and yellow-fleshed kiwifruits. Natural enemies were investigated as well. Field surveys were performed weekly in two sites in Northern Italy by pheromone-baited traps and visual samplings, from early Spring to mid-Autumn. All BMSB life stages were collected and kept under observation to assess occurrence of parasitoids. A sample of fruit was dissected weekly to detect BMSB feeding injuries. In 2018-2019, BMSB was found throughout the growing season with two generations per year with a large overlapping of all life stages. Pheromone-baited traps and visual samplings gave consistent results and can be both considered effective sampling methods on kiwifruit. Fruit injuries were significantly related to kiwifruit development stage, weekly captures of BMSBs by traps, and cultivar. Several BMSB egg masses were found on kiwifruit leaves. Anastatus bifasciatus Geoffroy (Hymenoptera: Eupelmidae), a native egg parasitoid with Palearctic distribution, emerged from 20.14% of eggs in 2018, but the percent parasitism dropped to 0.47% in 2019. In both years, other natural enemies were found exerting negligible pressure on BMSB populations. The determination of reliable economic thresholds for BMSB on kiwifruit is urgently needed to develop a robust and sustainable integrated pest management (IPM) strategy, and this study provides data towards that direction.
Collapse
Affiliation(s)
- Santolo Francati
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum Università di Bologna, Viale Fanin 42, 40127 Bologna,Italy
| | - Antonio Masetti
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum Università di Bologna, Viale Fanin 42, 40127 Bologna,Italy
| | - Riccardo Martinelli
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum Università di Bologna, Viale Fanin 42, 40127 Bologna,Italy
| | - Daniele Mirandola
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum Università di Bologna, Viale Fanin 42, 40127 Bologna,Italy
| | - Giacomo Anteghini
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum Università di Bologna, Viale Fanin 42, 40127 Bologna,Italy
| | - Riccardo Busi
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum Università di Bologna, Viale Fanin 42, 40127 Bologna,Italy
| | - Francesco Dalmonte
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum Università di Bologna, Viale Fanin 42, 40127 Bologna,Italy
| | - Francesco Spinelli
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum Università di Bologna, Viale Fanin 42, 40127 Bologna,Italy
| | - Giovanni Burgio
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum Università di Bologna, Viale Fanin 42, 40127 Bologna,Italy
| | - Maria Luisa Dindo
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum Università di Bologna, Viale Fanin 42, 40127 Bologna,Italy
| |
Collapse
|
8
|
Teoh MC, Furusawa G, Veera Singham G. Multifaceted interactions between the pseudomonads and insects: mechanisms and prospects. Arch Microbiol 2021; 203:1891-1915. [PMID: 33634321 DOI: 10.1007/s00203-021-02230-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/19/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023]
Abstract
Insects and bacteria are the most widespread groups of organisms found in nearly all habitats on earth, establishing diverse interactions that encompass the entire range of possible symbiotic associations from strict parasitism to obligate mutualism. The complexity of their interactions is instrumental in shaping the roles of insects in the environment, meanwhile ensuring the survival and persistence of the associated bacteria. This review aims to provide detailed insight on the multifaceted symbiosis between one of the most versatile bacterial genera, Pseudomonas (Gammaproteobacteria: Pseudomonadaceae) and a diverse group of insect species. The Pseudomonas engages with varied interactions with insects, being either a pathogen or beneficial endosymbiont, as well as using insects as vectors. In addition, this review also provides updates on existing and potential applications of Pseudomonas and their numerous insecticidal metabolites as biocontrol agents against pest insects for the improvement of integrated pest management strategies. Here, we have summarized several known modes of action and the virulence factors of entomopathogenic Pseudomonas strains essential for their pathogenicity against insects. Meanwhile, the beneficial interactions between pseudomonads and insects are currently limited to a few known insect taxa, despite numerous studies reporting identification of pseudomonads in the guts and haemocoel of various insect species. The vector-symbiont association between pseudomonads and insects can be diverse from strict phoresy to a role switch from commensalism to parasitism following a dose-dependent response. Overall, the pseudomonads appeared to have evolved independently to be either exclusively pathogenic or beneficial towards insects.
Collapse
Affiliation(s)
- Miao-Ching Teoh
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia
| | - Go Furusawa
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia
| | - G Veera Singham
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia.
| |
Collapse
|
9
|
Donati I, Cellini A, Sangiorgio D, Vanneste JL, Scortichini M, Balestra GM, Spinelli F. Pseudomonas syringae pv. actinidiae: Ecology, Infection Dynamics and Disease Epidemiology. MICROBIAL ECOLOGY 2020; 80:81-102. [PMID: 31897570 PMCID: PMC7223186 DOI: 10.1007/s00248-019-01459-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 11/04/2019] [Indexed: 05/06/2023]
Abstract
Since 2008, the kiwifruit industry has been devastated by a pandemic outbreak of Pseudomonas syringae pv. actinidiae (Psa), the causal agent of bacterial canker. This disease has become the most significant limiting factor in kiwifruit production. Psa colonizes different organs of the host plant, causing a specific symptomatology on each of them. In addition, the systemic invasion of the plant may quickly lead to plant death. Despite the massive risk that this disease poses to the kiwifruit industry, studies focusing on Psa ecology have been sporadic, and a comprehensive description of the disease epidemiology is still missing. Optimal environmental conditions for infection, dispersal and survival in the environment, or the mechanisms of penetration and colonization of host tissues have not been fully elucidated yet. The present work aims to provide a synthesis of the current knowledge, and a deeper understanding of the epidemiology of kiwifruit bacterial canker based on new experimental data. The pathogen may survive in the environment or overwinter in dormant tissues and be dispersed by wind or rain. Psa was observed in association with several plant structures (stomata, trichomes, lenticels) and wounds, which could represent entry points for apoplast infection. Environmental conditions also affect the bacterial colonization, with lower optimum values of temperature and humidity for epiphytic than for endophytic growth, and disease incidence requiring a combination of mild temperature and leaf wetness. By providing information on Psa ecology, these data sets may contribute to plan efficient control strategies for kiwifruit bacterial canker.
Collapse
Affiliation(s)
- Irene Donati
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, viale Fanin 46, 40127, Bologna, Italy
| | - Antonio Cellini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, viale Fanin 46, 40127, Bologna, Italy
| | - Daniela Sangiorgio
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, viale Fanin 46, 40127, Bologna, Italy
| | - Joel L Vanneste
- The New Zealand Institute for Plant & Food Research Ltd, Ruakura Research Centre, Bisley Road, Ruakura, Private Bag 3123, Hamilton, 3240, New Zealand
| | - Marco Scortichini
- Council for research in agriculture and economics (CREA), Research Centre for Olive, Fruit Trees and Citrus, Via di Fioranello, 52, I-00134, Rome, Italy
| | - Giorgio M Balestra
- Department for Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis snc -, 01100, Viterbo, Italy
| | - Francesco Spinelli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, viale Fanin 46, 40127, Bologna, Italy.
| |
Collapse
|