1
|
Tang D, Hu Y, Gao W. 5-lipoxygenase as a target to sensitize glioblastoma to temozolomide treatment via β-catenin-dependent pathway. Neurol Res 2023; 45:1026-1034. [PMID: 37695758 DOI: 10.1080/01616412.2023.2255414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023]
Abstract
Sensitizing strategy is required to improve the clinical management of glioblastoma (GBM). 5-Lipoxygenase (Alox5) has been recently garnered attention due to its pro-carcinogenic roles in various cancers. This study demonstrates that Alox5 is overexpressed in GBM but not normal neuronal tissues. Alox5 depletion inhibits the growth of GBM cells, both in bulky and stem-like populations, and enhances the anti-cancer effects of temozolomide. The mechanism behind this involves a decrease in β-catenin level and activity upon Alox5 depletion. The inhibitory effects of Alox5 can be reversed by the addition of a Wnt agonist. Additionally, the study reveals that zileuton, an Alox5 inhibitor approved for asthma treatment, significantly improves the efficacy of temozolomide in mice without causing toxicity. Combination index analysis clearly demonstrates that zileuton and temozolomide act synergistically. These findings highlight the importance of Alox5 as a critical regulator of glioblastoma sensitivity and suggest the potential repurposing of zileuton for GBM treatment.
Collapse
Affiliation(s)
- Dong Tang
- Department of Neurosurgery, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Yue Hu
- Department of Oncology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Wenhong Gao
- Department of Neurosurgery, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| |
Collapse
|
2
|
Kothapalli KSD, Park HG, Kothapalli NSL, Brenna JT. FADS2 function at the major cancer hotspot 11q13 locus alters fatty acid metabolism in cancer. Prog Lipid Res 2023; 92:101242. [PMID: 37597812 DOI: 10.1016/j.plipres.2023.101242] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/31/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
Dysregulation of fatty acid metabolism and de novo lipogenesis is a key driver of several cancer types through highly unsaturated fatty acid (HUFA) signaling precursors such as arachidonic acid. The human chromosome 11q13 locus has long been established as the most frequently amplified in a variety of human cancers. The fatty acid desaturase genes (FADS1, FADS2 and FADS3) responsible for HUFA biosynthesis localize to the 11q12-13.1 region. FADS2 activity is promiscuous, catalyzing biosynthesis of several unsaturated fatty acids by Δ6, Δ8, and Δ4 desaturation. Our main aim here is to review known and putative consequences of FADS2 dysregulation due to effects on the 11q13 locus potentially driving various cancer types. FADS2 silencing causes synthesis of sciadonic acid (5Z,11Z,14Z-20:3) in MCF7 cells and breast cancer in vivo. 5Z,11Z,14Z-20:3 is structurally identical to arachidonic acid (5Z,8Z,11Z,14Z-20:4) except it lacks the internal Δ8 double bond required for prostaglandin and leukotriene synthesis, among other eicosanoids. Palmitic acid has substrate specificity for both SCD and FADS2. Melanoma, prostate, liver and lung cancer cells insensitive to SCD inhibition show increased FADS2 activity and sapienic acid biosynthesis. Elevated serum mead acid levels found in hepatocellular carcinoma patients suggest an unsatisfied demand for arachidonic acid. FADS2 circular RNAs are at high levels in colorectal and lung cancer tissues. FADS2 circular RNAs are associated with shorter overall survival in colorectal cancer patients. The evidence thusfar supports an effort for future research on the role of FADS2 as a tumor suppressor in a range of neoplastic disorders.
Collapse
Affiliation(s)
- Kumar S D Kothapalli
- Dell Pediatric Research Institute, Dell Medical School and Department of Nutritional Sciences, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, USA.
| | - Hui Gyu Park
- Dell Pediatric Research Institute, Dell Medical School and Department of Nutritional Sciences, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, USA
| | | | - J Thomas Brenna
- Dell Pediatric Research Institute, Dell Medical School and Department of Nutritional Sciences, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, USA.
| |
Collapse
|
3
|
Zhang HC, Deng SH, Pi YN, Guo JN, Xi H, Shi X, Yang XF, Zhang BM, Xue WN, Cui BB, Liu YL. Identification and Validation in a Novel Quantification System of Ferroptosis Patterns for the Prediction of Prognosis and Immunotherapy Response in Left- and Right-Sided Colon Cancer. Front Immunol 2022; 13:855849. [PMID: 35444656 PMCID: PMC9014300 DOI: 10.3389/fimmu.2022.855849] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/07/2022] [Indexed: 12/20/2022] Open
Abstract
Background This study aimed to establish a novel quantification system of ferroptosis patterns and comprehensively analyze the relationship between ferroptosis score (FS) and the immune cell infiltration (ICI) characterization, tumor mutation burden (TMB), prognosis, and therapeutic sensitivity in left-sided and right-sided colon cancers (LCCs and RCCs, respectively). Methods We comprehensively evaluated the ferroptosis patterns in 444 LCCs and RCCs based on 59 ferroptosis-related genes (FRGs). The FS was constructed to quantify ferroptosis patterns by using principal component analysis algorithms. Next, the prognostic value and therapeutic sensitivities were evaluated using multiple methods. Finally, we performed weighted gene co-expression network analysis (WGCNA) to identify the key FRGs. The IMvigor210 cohort, TCGA-COAD proteomics cohort, and Immunophenoscores were used to verify the predictive abilities of FS and the key FRGs. Results Two ferroptosis clusters were determined. Ferroptosis cluster B demonstrated a high degree of congenital ICI and stromal-related signal enrichment with a poor prognosis. The prognosis, response of targeted inhibitors, and immunotherapy were significantly different between high and low FS groups (HSG and LSG, respectively). HSG was characterized by high TMB and microsatellite instability-high subtype with poor prognosis. Meanwhile, LSG was more likely to benefit from immunotherapy. ALOX5 was identified as a key FRG based on FS. Patients with high protein levels of ALOX5 had poorer prognoses. Conclusion This work revealed that the evaluation of ferroptosis subtypes will contribute to gaining insight into the heterogeneity in LCCs and RCCs. The quantification for ferroptosis patterns played a non-negligible role in predicting ICI characterization, prognosis, and individualized immunotherapy strategies.
Collapse
Affiliation(s)
- Heng-Chun Zhang
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shen-Hui Deng
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ya-Nan Pi
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jun-Nan Guo
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hua Xi
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xin Shi
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xue-Fei Yang
- The First Department of Oncology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo-Miao Zhang
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wei-Nan Xue
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bin-Bin Cui
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yan-Long Liu
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
4
|
Kocherlakota C, Nagaraju B, Arjun N, Srinath A, Kothapalli KSD, Brenna JT. Inhalation of nebulized omega-3 fatty acids mitigate LPS-induced acute lung inflammation in rats: Implications for treatment of COPD and COVID-19. Prostaglandins Leukot Essent Fatty Acids 2022; 179:102426. [PMID: 35381532 PMCID: PMC8964507 DOI: 10.1016/j.plefa.2022.102426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 01/08/2023]
Abstract
Many current treatment options for lung inflammation and thrombosis come with unwanted side effects. The natural omega-3 fatty acids (O3FA) are generally anti-inflammatory and antithrombotic. O3FA are always administered orally and occasionally by intravenous (IV) infusion. The main goal of this study is to determine if O3FA administered by inhalation of a nebulized formulation mitigates LPS-induced acute lung inflammation in male Wistar rats. Inflammation was triggered by intraperitoneal injection of LPS once a day for 14 days. One hour post-injection, rats received nebulized treatments consisting of egg lecithin emulsified O3, Budesonide and Montelukast, and blends of O3 and Melatonin or Montelukast or Cannabidiol; O3 was in the form of free fatty acids for all groups except one group with ethyl esters. Lung histology and cytokines were determined in n = 3 rats per group at day 8 and day 15. All groups had alveolar histiocytosis severity scores half or less than that of the disease control (Cd) treated with LPS and saline only inhalation. IL-6, TNF-α, TGF-β, and IL-10 were attenuated in all O3FA groups. IL-1β was attenuated in most but not all O3 groups. O3 administered as ethyl ester was overall most effective in mitigating LPS effects. No evidence of lipid pneumonia or other chronic distress was observed. These preclinical data suggest that O3FA formulations should be further investigated as treatments in lung inflammation and thrombosis related lung disorders, including asthma, chronic obstructive pulmonary disease, lung cancer and acute respiratory distress such as COVID-19.
Collapse
Affiliation(s)
| | - Banda Nagaraju
- Leiutis Pharmaceuticals LLP, Plot No. 23, TIE 1st Phase, Balanagar, Hyderabad, Telangana 500037, India
| | - Narala Arjun
- Leiutis Pharmaceuticals LLP, Plot No. 23, TIE 1st Phase, Balanagar, Hyderabad, Telangana 500037, India
| | - Akula Srinath
- Leiutis Pharmaceuticals LLP, Plot No. 23, TIE 1st Phase, Balanagar, Hyderabad, Telangana 500037, India
| | - Kumar S D Kothapalli
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, United States.
| | - J Thomas Brenna
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723, United States.
| |
Collapse
|
5
|
Tang J, Zhang C, Lin J, Duan P, Long J, Zhu H. ALOX5-5-HETE promotes gastric cancer growth and alleviates chemotherapy toxicity via MEK/ERK activation. Cancer Med 2021; 10:5246-5255. [PMID: 34121352 PMCID: PMC8335819 DOI: 10.1002/cam4.4066] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/16/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Background Recent studies highlight the regulatory role of arachidonate lipoxygenase5 (Alox5) and its metabolite 5‐hydroxyeicosatetraenoic acid (5‐HETE) in cancer tumorigenesis and progression. In this study, we analyzed the expression, biological function and the downstream signaling of Alox5 in gastric cancer. Methods Alox5 protein levels were measured using IHC and ELISA. Growth, migration and survival assays were performed. Phosphorylation of molecules involved in growth and survival signaling were analyzed by WB. Analysis of variance and t‐test were used for statistic analysis. Results Alox5 and 5‐HETE levels were upregulated in gastric cancer patients. ALOX5 overexpression or 5‐HETE addition activates gastric cancer cells and reduces chemotherapy’s efficacy. In contrast, ALOX5 inhibition via genetic and pharmacological approaches suppresses gastric cancer cells and enhances chemotherapy’s efficacy. In addition, Alox5 inhibition led to suppression of ERK‐mediated signaling pathways whereas ALOX5‐5‐HETE activates ERK‐mediated signaling in gastric cancer cells. Conclusions Our work demonstrates the critical role of ALOX5‐5‐HETE in gastric cancer and provides pre‐clinical evidence to initialize clinical trial using zileuton in combination with chemotherapy for treating gastric cancer.
Collapse
Affiliation(s)
- Jianjun Tang
- Department of General Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Chuang Zhang
- Department of Pediatrics, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Jingjing Lin
- Department of Blood Transfusion, Xiangyang Traditional Chinese Medicine Hospital, Xiangyang, China
| | - Peng Duan
- Department of Obstetrics and Gynaecology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Jian Long
- Department of Oncology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, China
| | - Hongyan Zhu
- Department of Oncology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| |
Collapse
|
6
|
Aberrant ALOX5 Activation Correlates with HER2 Status and Mediates Breast Cancer Biological Activities through Multiple Mechanisms. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1703531. [PMID: 33224971 PMCID: PMC7673939 DOI: 10.1155/2020/1703531] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/22/2020] [Indexed: 12/25/2022]
Abstract
Arachidonate lipoxygenases (ALOX) have been implicated in playing a critical role in tumorigenesis, development, and metastasis. We previously reported that ALOX12 is involved in breast cancer chemoresistance. In this study, we demonstrate that the ALOX5 activation correlates with the HER2 expression and mediates breast cancer growth and migration. We found that the ALOX5 expression and activity were upregulated in breast cancer patients, particularly in those tissues with HER2-positive. ALOX5 upregulation was also observed in HER2-positive breast cancer cells. In contrast, HER2 inhibition led to decreased expression and activity of ALOX5 but not ALOX5AP, suggesting that HER2 specifically regulates the ALOX5 expression and activity in breast cancer cells. We further demonstrated that ALOX5 is important for breast cancer biological activities with the predominant roles in growth and migration, likely through RhoA, focal adhesion, and PI3K/Akt/mTOR signaling but not epithelial mesenchymal transition (EMT). Our work is the first to report a correlation between the ALOX5 activity and HER2 overexpression in breast cancer. Our findings also highlight the therapeutic value of inhibiting ALOX5 in breast cancer, particularly those patients with the HER2 overexpression.
Collapse
|
7
|
Trinh HKT, Lee SH, Cao TBT, Park HS. Asthma pharmacotherapy: an update on leukotriene treatments. Expert Rev Respir Med 2019; 13:1169-1178. [PMID: 31544544 DOI: 10.1080/17476348.2019.1670640] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Asthma is a chronic inflammatory disease of the airways with a large heterogeneity of clinical phenotypes. There has been increasing interest regarding the role of cysteinyl leukotriene (LT) and leukotriene receptor antagonists (LTRA) in asthma treatment.Areas covered: This review summarized the data (published in PubMed during 1984-2019) regarding LTRA treatment in asthma and LTs-related airway inflammation mechanisms. Involvement of LTs C4/D4/E4 has been demonstrated in the several aspects of airway inflammation and remodeling. Novel pathways related to LTE4, the most potent mediator, and its respective receptors have recently been studied. Antagonists against cysteinyl leukotriene receptor (CysLTR) type 1, including montelukast, pranlukast and zafirlukast, have been widely prescribed in clinical practices; however, some clinical trials have shown insignificant responses to LTRAs in adult asthmatics, while some phenotypes of adult asthma showed more favorable responses to LTRAs including aspirin-exacerbated respiratory disease, elderly asthma, asthma associated with smoking, obesity and allergic rhinitis.Expert opinion: Further investigations are needed to understand the role of LTs in airway inflammation and remodeling of the asthmatic airways. There is a lack of biomarkers to predict responsiveness to LTRA, especially in adult asthmatics. Besides CysLTR1 antagonists, targets aiming other LT pathways should be considered.
Collapse
Affiliation(s)
- Hoang Kim Tu Trinh
- Department of Allergy and Clinical Immunology, Ajou University Medical Center, Suwon, South Korea.,Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh city, Ho Chi Minh city, Vietnam
| | - So-Hee Lee
- Department of Allergy and Clinical Immunology, Ajou University Medical Center, Suwon, South Korea
| | | | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University Medical Center, Suwon, South Korea.,Department of Biomedicine, Ajou University, Suwon, South Korea
| |
Collapse
|
8
|
Kim W, Son B, Lee S, Do H, Youn B. Targeting the enzymes involved in arachidonic acid metabolism to improve radiotherapy. Cancer Metastasis Rev 2018; 37:213-225. [DOI: 10.1007/s10555-018-9742-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|