1
|
Wang C, Rong X, Zhang F, Mu X, Jiang J. Cryo-trojan mesenchymal stem cells as non-living tumor-homing supercarriers for enhanced drug delivery and immune activation in prostate cancer. Mater Today Bio 2025; 32:101650. [PMID: 40151804 PMCID: PMC11937679 DOI: 10.1016/j.mtbio.2025.101650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/28/2025] [Accepted: 03/08/2025] [Indexed: 03/29/2025] Open
Abstract
Background Prostate cancer remains a leading cause of cancer-related mortality, with conventional therapies limited by systemic toxicity and poor tumor targeting. Developing innovative drug delivery systems that enhance therapeutic specificity while minimizing off-target effects is critical. Materials and methods We engineered cryo-trojan human umbilical cord mesenchymal stem cells (CT-MSCs) as non-living, tumor-homing carriers for mitoxantrone (MTX), termed CT-MTX. Cryo-treatment preserved structural integrity and chemokine receptors (CXCR4/CCR2) for tumor targeting while eliminating proliferative risks. Comprehensive evaluations included drug loading/release kinetics, in vitro tumor suppression, immunogenic cell death (ICD) induction, and in vivo efficacy/safety in prostate cancer models. Results CT-MTX demonstrated superior drug loading (116.38 μg/106 cells) and pH-sensitive release (74.10 % at pH 5.5), outperforming exosomes, liposomes, and living MSCs in stability and tumor-specific drug delivery. Compared to liposomes (low targeting) and nanomaterials (biocompatibility concerns), CT-MTX leveraged MSC-derived tropism without tumorigenic risks. In vitro, CT-MTX inhibited tumor proliferation (84.83 % MTX uptake), migration (4.42 % residual migration), and induced apoptosis (43.23 % late apoptosis). Mechanistically, CT-MTX triggered ICD via PAMPs release, activating CD8+ T cells and suppressing immunosuppressive Treg. In vivo, CT-MTX selectively accumulated in tumors, reducing growth by 87.88 % and extending survival (93.30 % vs. 66.70 % in controls) with negligible systemic toxicity. Proteomics revealed enriched immune pathways like NK cell cytotoxicity, validating its dual role in direct tumor killing and immune activation. Conclusion CT-MTX represents a novel, non-proliferative drug delivery platform that combines the tumor-homing capacity of MSCs with enhanced safety and controlled release, inducing ICDs for prostate cancer and other immunologically "cold" tumors to improve immune infiltration.
Collapse
Affiliation(s)
| | | | - Fuqiang Zhang
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, China
| | - Xupeng Mu
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, China
| | - Jinlan Jiang
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, China
| |
Collapse
|
2
|
Zhou J, Zhou F, Yang L, Liang H, Zhu Q, Guo F, Yin X, Li J. Morinda officinalis saponins promote osteogenic differentiation of human umbilical cord-derived mesenchymal stem cells via the BMP-SMAD signaling pathway. Am J Transl Res 2024; 16:5441-5453. [PMID: 39544743 PMCID: PMC11558395 DOI: 10.62347/knrs3234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/19/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Morinda officinalis saponins (MOS), a traditional Chinese medicine extracted from M. officinalis roots, have been used as a health supplement. Existing evidence suggests that extracts from this plant can be used for osteoporosis treatment. However, the molecular mechanisms underlying the anti-osteoporotic effects of M. officinalis remain poorly understood. METHODS AND RESULTS In this study, we investigated the osteogenesis-promoting effects of MOS on human umbilical cord-derived mesenchymal stem cells (HUC-MSCs). Alkaline phosphatase staining, alizarin red staining, and quantitative reverse transcription-PCR demonstrated that MOS promoted the osteogenic differentiation of HUC-MSCs in a concentration-dependent manner. RNA sequencing results showed that the expression of key osteogenic differentiation-related genes, including BMP4, as well as the activity of transforming growth factor-β and calcium signaling pathways increased following MOS treatment. Furthermore, treatment with the bone morphogenetic protein (BMP) antagonist Noggin reversed the MOS-induced pro-osteogenic differentiation effects and the upregulation of osteoblast-specific markers. CONCLUSIONS Overall, the results indicate that MOS can partially promote osteogenic differentiation of HUC-MSCs by regulating the BMP-SMAD signaling pathway. These findings indicate the potential utility of MOS as a therapeutic agent for osteoporosis, particularly in the context of stem cell therapy.
Collapse
Affiliation(s)
- Jian Zhou
- Applied Biology Laboratory, College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical TechnologyShenyang 110142, Liaoning, China
- College of Pharmaceutical Sciences, Gannan Medical UniversityGanzhou 341000, Jiangxi, China
| | - Fanru Zhou
- Applied Biology Laboratory, College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical TechnologyShenyang 110142, Liaoning, China
| | - Liu Yang
- Applied Biology Laboratory, College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical TechnologyShenyang 110142, Liaoning, China
| | - Haihui Liang
- Applied Biology Laboratory, College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical TechnologyShenyang 110142, Liaoning, China
| | - Qinyao Zhu
- Applied Biology Laboratory, College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical TechnologyShenyang 110142, Liaoning, China
| | - Fenghua Guo
- Glabiolus Biotech (Xuzhou) Co., Ltd.Xuzhou 221000, Jiangsu, China
| | - Xiushan Yin
- Applied Biology Laboratory, College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical TechnologyShenyang 110142, Liaoning, China
| | - Jian Li
- College of Pharmaceutical Sciences, Gannan Medical UniversityGanzhou 341000, Jiangxi, China
- Glabiolus Biotech (Jiangxi) Co., Ltd.Ganzhou 341005, Jiangxi, China
| |
Collapse
|
3
|
Riedel R, Pérez-Amodio S, Cabo-Zabala L, Velasco-Ortega E, Maymó J, Gil J, Monsalve-Guil L, Ortiz-Garcia I, Pérez-Pérez A, Sánchez-Margalet V, Jiménez-Guerra A. Influence of the Surface Topography of Titanium Dental Implants on the Behavior of Human Amniotic Stem Cells. Int J Mol Sci 2024; 25:7416. [PMID: 39000523 PMCID: PMC11242699 DOI: 10.3390/ijms25137416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
The dental implant surface plays a crucial role in osseointegration. The topography and physicochemical properties will affect the cellular functions. In this research, four distinct titanium surfaces have been studied: machined acting (MACH), acid etched (AE), grit blasting (GBLAST), and a combination of grit blasting and subsequent acid etching (GBLAST + AE). Human amniotic mesenchymal (hAMSCs) and epithelial stem cells (hAECs) isolated from the amniotic membrane have attractive stem-cell properties. They were cultured on titanium surfaces to analyze their impact on biological behavior. The surface roughness, microhardness, wettability, and surface energy were analyzed using interferometric microscopy, Vickers indentation, and drop-sessile techniques. The GBLAST and GBLAST + AE surfaces showed higher roughness, reduced hydrophilicity, and lower surface energy with significant differences. Increased microhardness values for GBLAST and GBLAST + AE implants were attributed to surface compression. Cell viability was higher for hAMSCs, particularly on GBLAST and GBLAST + AE surfaces. Alkaline phosphatase activity enhanced in hAMSCs cultured on GBLAST and GBLAST + AE surfaces, while hAECs showed no mineralization signals. Osteogenic gene expression was upregulated in hAMSCs on GBLAST surfaces. Moreover, α2 and β1 integrin expression enhanced in hAMSCs, suggesting a surface-integrin interaction. Consequently, hAMSCs would tend toward osteoblastic differentiation on grit-blasted surfaces conducive to osseointegration, a phenomenon not observed in hAECs.
Collapse
Affiliation(s)
- Rodrigo Riedel
- Departament Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón 2, 4° Piso, Buenos Aires 1428, Argentina; (R.R.); (J.M.)
- CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Ciudad Universitaria Pabellón 2, 4th Floor, Buenos Aires 1428, Argentina
| | - Soledad Pérez-Amodio
- Bioengineering Institute of Technology, Facultad de Medicina y Ciencias de la Salud, Universidad Internacional de Cataluña, 08195 Sant Cugat del Vallés, Spain;
| | - Laura Cabo-Zabala
- Sección de Inmunología, Hospital Regional Universitario de Malaga, Instituto de Investigacion Biomédica de Malaga (IBIMA), 29590 Málaga, Spain;
| | - Eugenio Velasco-Ortega
- Department of Stomatology, Faculty of Dentistry, University of Seville, 41004 Sevilla, Spain; (E.V.-O.); (I.O.-G.); (A.J.-G.)
| | - Julieta Maymó
- Departament Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellón 2, 4° Piso, Buenos Aires 1428, Argentina; (R.R.); (J.M.)
- CONICET, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Ciudad Universitaria Pabellón 2, 4th Floor, Buenos Aires 1428, Argentina
| | - Javier Gil
- Bioengineering Institute of Technology, Facultad de Medicina y Ciencias de la Salud, Universidad Internacional de Cataluña, 08195 Sant Cugat del Vallés, Spain;
| | - Loreto Monsalve-Guil
- Department of Stomatology, Faculty of Dentistry, University of Seville, 41004 Sevilla, Spain; (E.V.-O.); (I.O.-G.); (A.J.-G.)
| | - Iván Ortiz-Garcia
- Department of Stomatology, Faculty of Dentistry, University of Seville, 41004 Sevilla, Spain; (E.V.-O.); (I.O.-G.); (A.J.-G.)
| | - Antonio Pérez-Pérez
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Hospital Universitario Virgen Macarena, Facultad de Medicina, Universidad de Sevilla, Avenida Sánchez Pizjuán 4, 41009 Sevilla, Spain; (A.P.-P.); (V.S.-M.)
| | - Victor Sánchez-Margalet
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Hospital Universitario Virgen Macarena, Facultad de Medicina, Universidad de Sevilla, Avenida Sánchez Pizjuán 4, 41009 Sevilla, Spain; (A.P.-P.); (V.S.-M.)
| | - Alvaro Jiménez-Guerra
- Department of Stomatology, Faculty of Dentistry, University of Seville, 41004 Sevilla, Spain; (E.V.-O.); (I.O.-G.); (A.J.-G.)
| |
Collapse
|
4
|
Nugraha AP, Kamadjaja DB, Sumarta NPM, Rizqiawan A, Pramono C, Yuliati A, Hendrianto E, Rahman MZ. Osteoinductive and Osteogenic Capacity of Freeze-Dried Bovine Bone Compared to Deproteinized Bovine Bone Mineral Scaffold in Human Umbilical Cord Mesenchymal Stem Cell Culture: An In Vitro Study. Eur J Dent 2023; 17:1106-1113. [PMID: 36599452 PMCID: PMC10756842 DOI: 10.1055/s-0042-1758786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE Freeze-dried bovine bone scaffold (FDBB) or decellularized FDBB (dc-FDBB) was developed as an ideal scaffold with osteoinductive properties. This research aims to compare the osteoinductive properties marked by the expression of runt-related transcription factor-2 (RUNX2) and Osterix (OSX) and the osteogenic capacity of these scaffolds imbued with human umbilical cord mesenchymal stem cells (hUCMSCs). MATERIALS AND METHODS This study was performed in five experimental groups: a negative control group (C-) of hUCMSCs with a normal growth medium, a positive control group (C + ) of hUCMSCs with an osteogenic medium, experimental group 1 (E1) with an FDBB conditioned medium (CM), and experimental group 2 (E2) with a dc-FDBB-CM, and a third experimental group (E3) consisting of a DBBM-CM. Alizarin red staining was performed to qualitatively assess osteoinductive capacity. RUNX2 and OSX expression was quantified using real-time quantification polymerase chain reaction with two replications on day six (D6) and day 12 (D12) as fold changes. RESULTS This experiment revealed that hUCMSCs were positively expressed by CD73, CD90, and CD105 but were not expressed by CD34. Alizarin red staining showed that E1 had the most calcium deposition on D6 and D12, followed by E3 and then E2 The RUNX2 and OSX expression was higher in E1 but this difference was not significant. The OSX expression in E1,E2,E3 was lower on D12 and C+ of OSX had the highest expression. There was a significant difference of fold change measured between all groups (p < 0.05), and there was no significant difference between any of the groups treated with OSX and RUNX2 on D6 and D12. CONCLUSION FDBB osteoinduction and osteogenic capacity were higher when compared with DBBM and dc-FDBB.
Collapse
Affiliation(s)
- Andreas Pratama Nugraha
- Magister Program of Clinical Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - David B. Kamadjaja
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ni Putu Mira Sumarta
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Andra Rizqiawan
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Coen Pramono
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Anita Yuliati
- Departement of Dental Material, Faculty of Dental medicine Universitas Airlangga, Surabaya, Indonesia
| | - Eryk Hendrianto
- Stem Cell Research and Developmental Center, Universitas Airlangga, Surabaya, Indonesia
| | - Mohammad Zeshaan Rahman
- Department of Oral and Maxillofacial Surgery, Pioneer Dental College and Hospital, Dhaka, Bangladesh
| |
Collapse
|
5
|
Kim GY, Choi GT, Park J, Lee J, Do JT. Comparative Analysis of Porcine Adipose- and Wharton's Jelly-Derived Mesenchymal Stem Cells. Animals (Basel) 2023; 13:2947. [PMID: 37760347 PMCID: PMC10525484 DOI: 10.3390/ani13182947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are promising candidates for tissue regeneration, cell therapy, and cultured meat research owing to their ability to differentiate into various lineages including adipocytes, chondrocytes, and osteocytes. As MSCs display different characteristics depending on the tissue of origin, the appropriate cells need to be selected according to the purpose of the research. However, little is known of the unique properties of MSCs in pigs. In this study, we compared two types of porcine mesenchymal stem cells (MSCs) isolated from the dorsal subcutaneous adipose tissue (adipose-derived stem cells (ADSCs)) and Wharton's jelly of the umbilical cord (Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs)) of 1-day-old piglets. The ADSCs displayed a higher proliferation rate and more efficient differentiation potential into adipogenic and chondrogenic lineages than that of WJ-MSCs; conversely, WJ-MSCs showed superior differentiation capacity towards osteogenic lineages. In early passages, ADSCs displayed higher proliferation rates and mitochondrial energy metabolism (measured based on the oxygen consumption rate) compared with that of WJ-MSCs, although these distinctions diminished in late passages. This study broadens our understanding of porcine MSCs and provides insights into their potential applications in animal clinics and cultured meat science.
Collapse
Affiliation(s)
- Ga Yeon Kim
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Technology, Konkuk University, Seoul 05029, Republic of Korea; (G.Y.K.); (G.T.C.); (J.P.)
- 3D Tissue Culture Research Center, Konkuk University, Seoul 05029, Republic of Korea
| | - Gyu Tae Choi
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Technology, Konkuk University, Seoul 05029, Republic of Korea; (G.Y.K.); (G.T.C.); (J.P.)
- 3D Tissue Culture Research Center, Konkuk University, Seoul 05029, Republic of Korea
| | - Jinryong Park
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Technology, Konkuk University, Seoul 05029, Republic of Korea; (G.Y.K.); (G.T.C.); (J.P.)
- 3D Tissue Culture Research Center, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeongeun Lee
- Department of Agricultural Convergency Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biotechnology, KU Institute of Technology, Konkuk University, Seoul 05029, Republic of Korea; (G.Y.K.); (G.T.C.); (J.P.)
- 3D Tissue Culture Research Center, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
6
|
Zhu Z, Zhang Y, Huang Z, Hao H, Yan M. Hypoxic culture of umbilical cord mesenchymal stem cell-derived sEVs prompts peripheral nerve injury repair. Front Cell Neurosci 2023; 16:897224. [PMID: 36970310 PMCID: PMC10035596 DOI: 10.3389/fncel.2022.897224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 12/07/2022] [Indexed: 03/11/2023] Open
Abstract
IntroductionRepair and regeneration of the peripheral nerve are important for the treatment of peripheral nerve injury (PNI) caused by mechanical tears, external compression injuries and traction injuries. Pharmacological treatment can promote the proliferation of fibroblasts and Schwann cells (SCs), which longitudinally fill the endoneurial canal and form Bungner’s band, helping the repair of peripheral nerves. Therefore, the development of new drugs for the treatment of PNI has become a top priority in recent years.MethodsHere, we report that small extracellular vesicles (sEVs) produced from umbilical cord mesenchymal stem cells (MSC-sEVs) cultured under hypoxia promote repair and regeneration of the peripheral nerve in PNI and may be a new therapeutic drug candidate.ResultsThe results showed that the amount of secreted sEVs was significantly increased in UC-MSCs compared with control cells after 48 h of culture at 3% oxygen partial pressure in a serum-free culture system. The identified MSC-sEVs could be taken up by SCs in vitro, promoting the growth and migration of SCs. In a spared nerve injury (SNI) mouse model, MSC-sEVs accelerated the recruitment of SCs at the site of PNI and promoted peripheral nerve repair and regeneration. Notably, repair and regeneration in the SNI mouse model were enhanced by treatment with hypoxic cultured UC-MSC-derived sEVs.DiscussionTherefore, we conclude that hypoxic cultured UC-MSC-derived sEVs may be a promising candidate drug for repair and regeneration in PNI.
Collapse
Affiliation(s)
- Ziying Zhu
- The First Medical Center of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Ziying Zhu,
| | - Yujun Zhang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, Peking University Health Science Center, Beijing, China
| | - Zhihua Huang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, Peking University Health Science Center, Beijing, China
| | - Haojie Hao
- The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Haojie Hao,
| | - Muyang Yan
- The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Muyang Yan,
| |
Collapse
|
7
|
Ashammakhi N, GhavamiNejad A, Tutar R, Fricker A, Roy I, Chatzistavrou X, Hoque Apu E, Nguyen KL, Ahsan T, Pountos I, Caterson EJ. Highlights on Advancing Frontiers in Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:633-664. [PMID: 34210148 PMCID: PMC9242713 DOI: 10.1089/ten.teb.2021.0012] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/15/2021] [Indexed: 01/05/2023]
Abstract
The field of tissue engineering continues to advance, sometimes in exponential leaps forward, but also sometimes at a rate that does not fulfill the promise that the field imagined a few decades ago. This review is in part a catalog of success in an effort to inform the process of innovation. Tissue engineering has recruited new technologies and developed new methods for engineering tissue constructs that can be used to mitigate or model disease states for study. Key to this antecedent statement is that the scientific effort must be anchored in the needs of a disease state and be working toward a functional product in regenerative medicine. It is this focus on the wildly important ideas coupled with partnered research efforts within both academia and industry that have shown most translational potential. The field continues to thrive and among the most important recent developments are the use of three-dimensional bioprinting, organ-on-a-chip, and induced pluripotent stem cell technologies that warrant special attention. Developments in the aforementioned areas as well as future directions are highlighted in this article. Although several early efforts have not come to fruition, there are good examples of commercial profitability that merit continued investment in tissue engineering. Impact statement Tissue engineering led to the development of new methods for regenerative medicine and disease models. Among the most important recent developments in tissue engineering are the use of three-dimensional bioprinting, organ-on-a-chip, and induced pluripotent stem cell technologies. These technologies and an understanding of them will have impact on the success of tissue engineering and its translation to regenerative medicine. Continued investment in tissue engineering will yield products and therapeutics, with both commercial importance and simultaneous disease mitigation.
Collapse
Affiliation(s)
- Nureddin Ashammakhi
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, California, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, Michigan, USA
| | - Amin GhavamiNejad
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Rumeysa Tutar
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Annabelle Fricker
- Department of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Ipsita Roy
- Department of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield, United Kingdom
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Xanthippi Chatzistavrou
- Department of Chemical Engineering and Material Science, College of Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Ehsanul Hoque Apu
- Department of Bioengineering, Henry Samueli School of Engineering, University of California, Los Angeles, California, USA
| | - Kim-Lien Nguyen
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Taby Ahsan
- RoosterBio, Inc., Frederick, Maryland, USA
| | - Ippokratis Pountos
- Academic Department of Trauma and Orthopaedics, University of Leeds, Leeds, United Kingdom
| | - Edward J. Caterson
- Division of Plastic Surgery, Department of Surgery, Nemours/Alfred I. du Pont Hospital for Children, Wilmington, Delaware, USA
| |
Collapse
|
8
|
Wang Z, Li H, Fang J, Wang X, Dai S, Cao W, Guo Y, Li Z, Zhu H. Comparative Analysis of the Therapeutic Effects of Amniotic Membrane and Umbilical Cord Derived Mesenchymal Stem Cells for the Treatment of Type 2 Diabetes. Stem Cell Rev Rep 2022; 18:1193-1206. [PMID: 35015214 PMCID: PMC8749914 DOI: 10.1007/s12015-021-10320-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2021] [Indexed: 11/09/2022]
Abstract
Type 2 diabetes mellitus (T2DM), one of the most common carbohydrate metabolism disorders, is characterized by chronic hyperglycemia and insulin resistance (IR), and has become an urgent global health challenge. Mesenchymal stem cells (MSCs) originating from perinatal tissues such as umbilical cord (UC) and amniotic membrane (AM) serve as ideal candidates for the treatment of T2DM due to their great advantages in terms of abundant source, proliferation capacity, immunomodulation and plasticity for insulin-producing cell differentiation. However, the optimally perinatal MSC source to treat T2DM remains elusive. This study aims to compare the therapeutic efficacy of MSCs derived from AM and UC (AMMSCs and UCMSCs) of the same donor in the alleviation of T2DM symptoms and explore the underlying mechanisms. Our results showed that AMMSCs and UCMSCs displayed indistinguishable immunophenotype and multi-lineage differentiation potential, but UCMSCs had a much higher expansion capacity than AMMSCs. Moreover, we uncovered that single-dose intravenous injection of either AMMSCs or UCMSCs could comparably reduce hyperglycemia and improve IR in T2DM db/db mice. Mechanistic investigations revealed that either AMMSC or UCMSC infusion could greatly improve glycolipid metabolism in the liver of db/db mice, which was evidenced by decreased liver to body weight ratio, reduced lipid accumulation, upregulated glycogen synthesis, and increased Akt phosphorylation. Taken together, these data indicate that the same donor-derived AMMSCs and UCMSCs possessed comparable effects and shared a similar hepatoprotective mechanism on the alleviation of T2DM symptoms.
Collapse
Affiliation(s)
- Zhifeng Wang
- Sinoneural Cell Engineering Group Holdings Co., Ltd, Shanghai, 201100, China. .,Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Haisen Li
- Sinoneural Cell Engineering Group Holdings Co., Ltd, Shanghai, 201100, China
| | - Jingmeng Fang
- Sinoneural Cell Engineering Group Holdings Co., Ltd, Shanghai, 201100, China
| | - Xiaoyu Wang
- Sinoneural Cell Engineering Group Holdings Co., Ltd, Shanghai, 201100, China
| | - Shuhang Dai
- Sinoneural Cell Engineering Group Holdings Co., Ltd, Shanghai, 201100, China
| | - Wei Cao
- Sinoneural Cell Engineering Group Holdings Co., Ltd, Shanghai, 201100, China
| | - Yinhong Guo
- Sinoneural Cell Engineering Group Holdings Co., Ltd, Shanghai, 201100, China
| | - Zhe Li
- Sinoneural Cell Engineering Group Holdings Co., Ltd, Shanghai, 201100, China
| | - Hao Zhu
- Sinoneural Cell Engineering Group Holdings Co., Ltd, Shanghai, 201100, China.
| |
Collapse
|
9
|
Nejad AR, Hamidieh AA, Amirkhani MA, Sisakht MM. Update review on five top clinical applications of human amniotic membrane in regenerative medicine. Placenta 2020; 103:104-119. [PMID: 33120046 DOI: 10.1016/j.placenta.2020.10.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/18/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022]
Abstract
Due to the increasing number of studies performed in the field of regenerative medicine during the last two decades, more analytic studies are still needed to clarify the future prospect of this area of science. The main aim of this research was to review the clinical applications of human Amniotic membrane in the field of regenerative medicine critically. Furthermore, in the light of increasing numbers of available products derived from amniotic membrane, we aimed look in depth to see whether regenerative medicine research strategies have a place in the clinical setting. More specifically, in the present study, we attempted to provide insight on developing the new indication for more research and in the next step, for market leaders companies to expand cost-effectiveness of new derived AM products. 20 companies or distributers have offered some commercial products in this field. Survey on more than 90 clinical trials in last five years showed dermatology (and more specific wound healing), orthopedic, and ophthalmology are heavily biased toward multibillion dollar industry. Moreover, urology and dentistry with fewer numbers of clinical data in comparison with the above-mentioned areas, currently are in the path of translation (especially dentistry). In addition, otolaryngology and oncology with the lowest number showed more potential of research thorough understanding the properties that will help guiding the use of AM-derived products in these two areas in future. More than 50% of clinical studies were done or are developing in USA, which have the biggest share in market products. Subsequently, China, Egypt, India, Iran, and Germany with the ongoing clinical trials in different phases may have more approved products in near future.
Collapse
Affiliation(s)
- Aida Rezaei Nejad
- Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell Therapy Research Center, Tehran University of Medical Sciences, Tehran, Iran; Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amir Amirkhani
- Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Mollapour Sisakht
- Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran; Department of Biochemistry, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
10
|
Zhao J, Zhang Z, Cui Q, Zhao L, Hu Y, Zhao S. Human adipose-derived mesenchymal stem cells inhibit proliferation and induce apoptosis of human gastric cancer HGC-27 cells. 3 Biotech 2020; 10:129. [PMID: 32154042 DOI: 10.1007/s13205-020-2090-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/21/2020] [Indexed: 02/02/2023] Open
Abstract
The aim of this study was to explore the effects of human adipose-derived mesenchymal stem cells (ASCs) on the growth of gastric cancer cells in vivo and vitro and its mechanism. ASCs were isolated from abandoned adipose tissues, and the surface markers were identified by flow cytometry. In vitro experiments, HGC-27 cells cultured in ASCs-conditioned medium (CM) were assigned as the experimental group, while HGC-27 cells cultured in normal medium were as the control group. MTT and colony formation assays were performed to detect cell viability and colony formatting ability, respectively. Annexin-V/PI assay, Western blot, and caspase-3 enzyme activity assay were performed to detect cells apoptosis. The isolated ASCs could be differentiated into adipocytes and osteoblasts in vitro. Flow cytometry showed that CD73 and CD105 were positively expressed in HGC-27 cells. Compared with the mice injected HGC-27 cells only, the tumor formation in mice injected both ASCs and HGC-27 cells was significantly smaller (P < 0.05). The colony formation ability in experimental group was 40.09% smaller than control group (P < 0.05) and the cell apoptosis rate in experimental group was higher than the control group (P < 0.05). Furthermore, the expressions of cleaved PARP, cleaved caspase-3 proteins, and caspase-3 enzyme viability in experimental group were significantly higher than those of control group (P < 0.05). In conclusion, ASCs can effectively inhibit the growth of HGC-27 cells by inducing apoptosis.
Collapse
Affiliation(s)
- Jianhong Zhao
- 1Department of General Surgery, Affiliated Hospital of Hebei University of Engineering, No. 81, Congtai Road, Handan, 056002 Hebei Province China
| | - Zilong Zhang
- 1Department of General Surgery, Affiliated Hospital of Hebei University of Engineering, No. 81, Congtai Road, Handan, 056002 Hebei Province China
| | - Qingfeng Cui
- 1Department of General Surgery, Affiliated Hospital of Hebei University of Engineering, No. 81, Congtai Road, Handan, 056002 Hebei Province China
| | - Lina Zhao
- 2Department of Pediatrics, Affiliated Hospital of Hebei University of Engineering, Handan, 056002 China
| | - Yongjun Hu
- 1Department of General Surgery, Affiliated Hospital of Hebei University of Engineering, No. 81, Congtai Road, Handan, 056002 Hebei Province China
| | - Subin Zhao
- 1Department of General Surgery, Affiliated Hospital of Hebei University of Engineering, No. 81, Congtai Road, Handan, 056002 Hebei Province China
| |
Collapse
|