1
|
Rahman MH, Al Azad S, Uddin MF, Farzana M, Sharmeen IA, Kabbo KS, Jabin A, Rahman A, Jamil F, Srishti SA, Riya FH, Khan T, Ahmed R, Nurunnahar, Rahman S, Khan MFR, Rahman MB. WGS-based screening of the co-chaperone protein DjlA-induced curved DNA binding protein A (CbpA) from a new multidrug-resistant zoonotic mastitis-causing Klebsiella pneumoniae strain: a novel molecular target of selective flavonoids. Mol Divers 2024; 28:3045-3066. [PMID: 37902899 DOI: 10.1007/s11030-023-10731-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/11/2023] [Indexed: 11/01/2023]
Abstract
The research aimed to establish a multidrug-resistant Klebsiella pneumoniae-induced genetic model for mastitis considering the alternative mechanisms of the DjlA-mediated CbpA protein regulation. The Whole Genome Sequencing of the newly isolated K. pneumoniae strain was conducted to annotate the frequently occurring antibiotic resistance and virulence factors following PCR and MALDI-TOF mass-spectrophotometry. Co-chaperon DjlA was identified and extracted via restriction digestion on PAGE. Based on the molecular string property analysis of different DnaJ and DnaK type genes, CbpA was identified to be regulated most by the DjlA protein during mastitis. Based on the quantum tunnel-cluster profiles, CbpA was modeled as a novel target for diversified biosynthetic, and chemosynthetic compounds. Pharmacokinetic and pharmacodynamic analyses were conducted to determine the maximal point-specificity of selective flavonoids in complexing with the CbpA macromolecule at molecular docking. The molecular dynamic simulation (100 ns) of each of the flavonoid-protein complexes was studied regarding the parameters RMSD, RMSF, Rg, SASA, MMGBSA, and intramolecular hydrogen bonds; where all of them resulted significantly. To ratify all the molecular dynamic simulation outputs, the potential stability of the flavonoids in complexing with CbpA can be remarked as Quercetin > Biochanin A > Kaempherol > Myricetin, which were all significant in comparison to the control Galangin. Finally, a comprehensive drug-gene interaction pathway for each of the flavonoids was developed to determine the simultaneous and quantitative-synergistic effects of different operons belonging to the DnaJ-type proteins on the metabolism of the tested pharmacophores in CbpA. Considering all the in vitro and in silico parameters, DjlA-mediated CbpA can be a novel target for the tested flavonoids as the potential therapeutics of mastitis as futuristic drugs.
Collapse
Affiliation(s)
- Mohammad Habibur Rahman
- Molecular Microbiology and Vaccinology Lab, Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Salauddin Al Azad
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
- Immunoinformatics and Vaccinomics Research Unit, RPG Interface Lab, Jashore, 7400, Bangladesh
| | - Mohammad Fahim Uddin
- College of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, People's Republic of China
- Immunoinformatics and Vaccinomics Research Unit, RPG Interface Lab, Jashore, 7400, Bangladesh
| | - Maisha Farzana
- School of Medicine, Dentistry and Nursing, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Iffat Ara Sharmeen
- Department of Mathematics & Natural Sciences, School of Data Sciences, BRAC University, Dhaka, 1212, Bangladesh
| | - Kaifi Sultana Kabbo
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229, Bangladesh
| | - Anika Jabin
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229, Bangladesh
- Immunoinformatics and Vaccinomics Research Unit, RPG Interface Lab, Jashore, 7400, Bangladesh
| | - Ashfaque Rahman
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229, Bangladesh
- Immunoinformatics and Vaccinomics Research Unit, RPG Interface Lab, Jashore, 7400, Bangladesh
| | - Farhan Jamil
- Department of Pharmacy, University of Asia Pacific, Farmgate, Dhaka, 1205, Bangladesh
| | | | - Fahmida Haque Riya
- School of Pharmacy, BRAC University, 66 Mohakhali, Dhaka, 1212, Bangladesh
| | - Towhid Khan
- Department of Medicine, Comilla Medical College, Kuchaitoli, Comilla, 3500, Bangladesh
| | - Rasel Ahmed
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, TS1 3BX, UK
| | - Nurunnahar
- Department of Mathematics, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Samiur Rahman
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229, Bangladesh
- Immunoinformatics and Vaccinomics Research Unit, RPG Interface Lab, Jashore, 7400, Bangladesh
| | - Mohammad Ferdousur Rahman Khan
- Molecular Microbiology and Vaccinology Lab, Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Bahanur Rahman
- Molecular Microbiology and Vaccinology Lab, Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| |
Collapse
|
2
|
Barzkar N, Sukhikh S, Babich O. Study of marine microorganism metabolites: new resources for bioactive natural products. Front Microbiol 2024; 14:1285902. [PMID: 38260902 PMCID: PMC10800913 DOI: 10.3389/fmicb.2023.1285902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024] Open
Abstract
The marine environment has remained a source of novel biological molecules with diversified applications. The ecological and biological diversity, along with a unique physical environment, have provided the evolutionary advantage to the plant, animals and microbial species thriving in the marine ecosystem. In light of the fact that marine microorganisms frequently interact symbiotically or mutualistically with higher species including corals, fish, sponges, and algae, this paper intends to examine the potential of marine microorganisms as a niche for marine bacteria. This review aims to analyze and summarize modern literature data on the biotechnological potential of marine fungi and bacteria as producers of a wide range of practically valuable products (surfactants, glyco-and lipopeptides, exopolysaccharides, enzymes, and metabolites with different biological activities: antimicrobial, antitumor, and cytotoxic). Hence, the study on bioactive secondary metabolites from marine microorganisms is the need of the hour. The scientific novelty of the study lies in the fact that for the first time, the data on new resources for obtaining biologically active natural products - metabolites of marine bacteria and fungi - were generalized. The review investigates the various kinds of natural products derived from marine microorganisms, specifically focusing on marine bacteria and fungi as a valuable source for new natural products. It provides a summary of the data regarding the antibacterial, antimalarial, anticarcinogenic, antibiofilm, and anti-inflammatory effects demonstrated by marine microorganisms. There is currently a great need for scientific and applied research on bioactive secondary metabolites of marine microorganisms from the standpoint of human and animal health.
Collapse
Affiliation(s)
- Noora Barzkar
- Department of Agro-Industrial Technology, Faculty of Applied Science, Food and Agro-Industrial Research Center, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
| | - Stanislav Sukhikh
- Research and Education Center “Industrial Biotechnologies”, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Olga Babich
- Research and Education Center “Industrial Biotechnologies”, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| |
Collapse
|