1
|
Badlaeva A, Tregubova A, Palicelli A, Asaturova A. Eosinophilic Cells in Ovarian Borderline Serous Tumors as a Predictor of BRAF Mutation. Cancers (Basel) 2024; 16:2322. [PMID: 39001384 PMCID: PMC11240704 DOI: 10.3390/cancers16132322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
According to recent reports, ovarian serous borderline tumor (SBT) harboring the BRAF V600E mutation is associated with a lower risk of progression to low-grade serous carcinoma. Preliminary observations suggest that there may be an association between eosinophilic cells (ECs) and the above-mentioned mutation, so this study aimed to evaluate interobserver reproducibility for assessing ECs. Forty-two samples of SBTs were analyzed for ECs with abundant eosinophilic cytoplasm. Immunohistochemical staining and genetic pro-filing were performed in all cases to verify the BRAF V600E mutation. A BRAF V600E mutation was found in 19 of 42 (45%) cases. Inter-observer reproducibility in the assessment of ECs was substantial (κ = 0.7). The sensitivity and specificity for predicting the mutation were 79% and 91%, respectively. Patients with BRAF-mutated SBTs were significantly younger than those without mutation (p = 0.005). SBTs with BRAF mutation were less likely to be accompanied by non-invasive implants than wild-type SBT: 12% (2/17) versus 33% (6/18). Seven cases were excluded due to incomplete cytoreductive surgery. Nevertheless, Fisher's exact test showed no significant differences between the two groups (p = 0.228). Overall, this study strengthens the idea that ECs in ovarian SBTs may represent a mutation with prognostic significance, which can serve as a primary screening test for BRAF V600E mutation in this pathologic entity.
Collapse
Affiliation(s)
- Alina Badlaeva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Health of Russia, Bldg. 4, Oparina Street, 117513 Moscow, Russia; (A.B.); (A.T.)
| | - Anna Tregubova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Health of Russia, Bldg. 4, Oparina Street, 117513 Moscow, Russia; (A.B.); (A.T.)
| | - Andrea Palicelli
- Pathology Unit, Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Aleksandra Asaturova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Health of Russia, Bldg. 4, Oparina Street, 117513 Moscow, Russia; (A.B.); (A.T.)
| |
Collapse
|
2
|
Abak N, Azad M, Ali FM, Saberian M, Turkaman S, Alizadeh S. DNA Methylation Pattern and mRNA Expression Level of E-Cadherin and P16 Genes in Thrombotic Disorders. Clin Appl Thromb Hemost 2024; 30:10760296241300490. [PMID: 39711001 DOI: 10.1177/10760296241300490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
OBJECTIVE DNA methylation, as an epigenetic alteration, plays an essential role in the development of atherosclerosis and venous thrombosis. E-cadherin, a tumor suppressor gene and adhesion molecule, has a crucial function in platelet aggregation and hemostasis. P16, a cell cycle regulator, is involved in venous thrombosis. The aim of this study is to evaluate the DNA methylation patterns and expression levels of the E-cadherin and P16 genes in venous thromboembolism (VTE). METHOD Peripheral blood samples were collected from 32 patients, including those with deep vein thrombosis (DVT, n = 15), pulmonary embolism (PE, n = 8), DVT with PE (n = 4), intestinal thrombosis (IT, n = 3), and cerebral venous sinus thrombosis (CVST, n = 2), as well as from 10 healthy individuals. The DNA methylation patterns and gene expression levels of E-cadherin and P16 were analyzed using methylation-specific PCR (MSP) and Real-Time PCR, respectively. RESULTS The promoter of the CDH1 gene was partially methylated in 84.4% of thrombotic patients and unmethylated in 15.6% (P = 0.183). A significantly higher expression level of CDH1 was observed in the patients compared to the controls (P = 0.001). The P16 gene promoter were unmethylated in all control and patient specimens. Compared to normal subjects, the expression level of the P16 was significantly increased in patients (P = 0.000). CONCLUSION Our results indicated that DNA methylation is not the main gene expression regulatory mechanism for E-cadherin and P16 genes in thrombosis. Higher transcription levels of CDH1 and P16 in thrombotic patients may show their crucial roles in the pathogenesis of VTE.
Collapse
Affiliation(s)
- Niloofar Abak
- Department of Hematology and Transfusion sciences, School of Allied Medical Sciences, Tehran University of Medical sciences, Tehran, Iran
| | - Mehdi Azad
- Department of Medical laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Fatemeh Mohammad Ali
- Iranian Blood Transfusion Research Center, Hight Institute for Education and Research in Transfusion Medicine, Tehran, Iran
| | - Mostafa Saberian
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Turkaman
- Mashhad University of Medical Sciences, School of Allied Medical Sciences, Mashhad, Iran
| | - Shaban Alizadeh
- Department of Hematology and Transfusion sciences, School of Allied Medical Sciences, Tehran University of Medical sciences, Tehran, Iran
| |
Collapse
|
4
|
Krasniqi E, Sacconi A, Marinelli D, Pizzuti L, Mazzotta M, Sergi D, Capomolla E, Donzelli S, Carosi M, Bagnato A, Gamucci T, Tomao S, Natoli C, Marchetti P, Grassadonia A, Tinari N, De Tursi M, Vizza E, Ciliberto G, Landi L, Cappuzzo F, Barba M, Blandino G, Vici P. MicroRNA-based signatures impacting clinical course and biology of ovarian cancer: a miRNOmics study. Biomark Res 2021; 9:57. [PMID: 34256855 PMCID: PMC8276429 DOI: 10.1186/s40364-021-00289-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
Background In Western countries, ovarian cancer (OC) still represents the leading cause of gynecological cancer-related deaths, despite the remarkable gains in therapeutical options. Novel biomarkers of early diagnosis, prognosis definition and prediction of treatment outcomes are of pivotal importance. Prior studies have shown the potentials of micro-ribonucleic acids (miRNAs) as biomarkers for OC and other cancers. Methods We focused on the prognostic and/or predictive potential of miRNAs in OC by conducting a comprehensive array profiling of miRNA expression levels in ovarian tissue samples from 17 non-neoplastic controls, and 60 tumor samples from OC patients treated at the Regina Elena National Cancer Institute (IRE). A set of 54 miRNAs with differential expression in tumor versus normal samples (T/N-deregulated) was identified in the IRE cohort and validated against data from the Cancer Genoma Atlas (TCGA) related to 563 OC patients and 8 non-neoplastic controls. The prognostic/predictive role of the selected 54 biomarkers was tested in reference to survival endpoints and platinum resistance (P-res). Results In the IRE cohort, downregulation of the 2 miRNA-signature including miR-99a-5p and miR-320a held a negative prognostic relevance, while upregulation of miR-224-5p was predictive of less favorable event free survival (EFS) and P-res. Data from the TCGA showed that downregulation of 5 miRNAs, i.e., miR-150, miR-30d, miR-342, miR-424, and miR-502, was associated with more favorable EFS and overall survival outcomes, while miR-200a upregulation was predictive of P-res. The 9 miRNAs globally identified were all included into a single biologic signature, which was tested in enrichment analysis using predicted/validated miRNA target genes, followed by network representation of the miRNA-mRNA interactions. Conclusions Specific dysregulated microRNA sets in tumor tissue showed predictive/prognostic value in OC, and resulted in a promising biological signature for this disease. Supplementary Information The online version contains supplementary material available at 10.1186/s40364-021-00289-6.
Collapse
Affiliation(s)
- E Krasniqi
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - A Sacconi
- UOSD Clinical Trial Center, Biostatistics and Bioinformatics, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - D Marinelli
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Medical Oncology Unit, Sapienza University, Via di Grottarossa 1035/1039, 00189, Rome, Italy
| | - L Pizzuti
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - M Mazzotta
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - D Sergi
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - E Capomolla
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - S Donzelli
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - M Carosi
- Pathology Department IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - A Bagnato
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - T Gamucci
- Medical Oncology, Sandro Pertini Hospital, Via dei Monti Tiburtini 385, 00157, Rome, Italy
| | - S Tomao
- Department of Radiological Oncological and Pathological Sciences, Division of Medical Oncology A, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - C Natoli
- Department of Medical, Oral & Biotechnological Sciences, University G. D'Annunzio, Via dei Vestini, 31, 66100, Chieti, Italy
| | - P Marchetti
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Medical Oncology Unit, Sapienza University, Via di Grottarossa 1035/1039, 00189, Rome, Italy
| | - A Grassadonia
- Department of Medical, Oral & Biotechnological Sciences, University G. D'Annunzio, Via dei Vestini, 31, 66100, Chieti, Italy
| | - N Tinari
- Department of Medical, Oral & Biotechnological Sciences, University G. D'Annunzio, Via dei Vestini, 31, 66100, Chieti, Italy
| | - M De Tursi
- Department of Medical, Oral & Biotechnological Sciences, University G. D'Annunzio, Via dei Vestini, 31, 66100, Chieti, Italy
| | - E Vizza
- Department of Oncological Surgery, Gynecologic Oncologic Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - G Ciliberto
- Scientific Direction, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - L Landi
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - F Cappuzzo
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - M Barba
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - G Blandino
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - P Vici
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| |
Collapse
|
5
|
Park MH, Choi JE, Kim JR, Bae YK. Immunohistochemical Expressions of Senescence-Associated Secretory Phenotype and Its Association With Immune Microenvironments and Clinicopathological Factors in Invasive Breast Cancer. Pathol Oncol Res 2021; 27:1609795. [PMID: 34267603 PMCID: PMC8276694 DOI: 10.3389/pore.2021.1609795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/16/2021] [Indexed: 01/05/2023]
Abstract
This study was undertaken to investigate immunohistochemical expression of the senescence-associated secretory phenotype (SASP) in invasive breast cancer (IBC) tissues and to determine relationships between SASP positivity and tumor microenvironments and the clinicopathological characteristics of IBC. Immunohistochemistry for senescence markers, that is, high mobility group box-1 (HMGB1), p16, p15, and decoy receptor 2 (DCR2), was performed in tissue microarrays of 1140 IBC samples. Cases positive for at least one of these four markers were considered SASP-positive. Relations between SASP and tumor characteristics, including immune microenvironments (stromal tumor-infiltrating lymphocytes [sTILs] density and numbers of intraepithelial CD103-positive [iCD103 + ] lymphocytes) and clinical outcomes were retrospectively evaluated. HMGB1, p16, p15, or DCR2 was positive in 6.7%, 26.6%, 21.1%, and 26.5%, respectively, of the 1,140 cases. Six hundred and five (53.1%) cases were SASP positive, and SASP positivity was significantly associated with histologic grade 3, high-sTIL and iCD103 + lymphocyte counts, absence of ER or PR, and a high Ki-67 index. Although SASP did not predict breast cancer-specific survival (BCSS) or disease-free survival (DFS) in the entire cohort, SASP positivity in luminal A IBC was associated with poor BCSS and DFS. However, patients with SASP-positive TNBC showed better survival than those with SASP-negative TNBC. In multivariate analysis, SASP positivity was an independent prognostic factor in both luminal A IBC and TNBC, although the effect on prognosis was the opposite. In conclusion, SASP would be involved in the modulation of immune microenvironments and tumor progression in IBC, and its prognostic significance depends on molecular subtype.
Collapse
Affiliation(s)
- Min Hui Park
- Department of Pathology, Yeungnam University College of Medicine, Daegu, South Korea
| | - Jung Eun Choi
- Department of Surgery, Division of Breast Surgery, Yeungnam University College of Medicine, Daegu, South Korea
| | - Jae-Ryong Kim
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu, South Korea
| | - Young Kyung Bae
- Department of Pathology, Yeungnam University College of Medicine, Daegu, South Korea
| |
Collapse
|