1
|
Assimopoulos S, Hammill C, Fernandes DJ, Spencer Noakes TL, Zhou YQ, Nutter LMJ, Ellegood J, Anagnostou E, Sled JG, Lerch JP. Genetic mouse models of autism spectrum disorder present subtle heterogenous cardiac abnormalities. Autism Res 2022; 15:1189-1208. [PMID: 35445787 PMCID: PMC9325472 DOI: 10.1002/aur.2728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/16/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder (ASD) and congenital heart disease (CHD) are linked on a functional and genetic level. Most work has investigated CHD‐related neurodevelopmental abnormalities. Cardiac abnormalities in ASD have been less studied. We investigated the prevalence of cardiac comorbidities relative to ASD genetic contributors. Using high frequency ultrasound imaging, we screened 9 ASD‐related genetic mouse models (Arid1b(+/−), Chd8(+/−), 16p11.2 (deletion), Sgsh(+/−), Sgsh(−/−), Shank3 Δexon 4–9(+/−), Shank3 Δexon 4–9(−/−), Fmr1(−/−), Vps13b(+/−)), and pooled wild‐type littermates (WTs). We measured heart rate (HR), aorta diameter (AoD), thickness and thickening of the left‐ventricular (LV) anterior and posterior walls, LV chamber diameter, fractional shortening, stroke volume and cardiac output, mitral inflow Peak E and A velocity ratio, ascending aorta velocity time integral (VTI). Mutant groups presented small‐scale alterations in cardiac structure and function compared to WTs (LV anterior wall thickness and thickening, chamber diameter and fractional shortening, HR). A greater number of significant differences was observed among mutant groups than between mutant groups and WTs. Mutant groups differed primarily in structural measures (LV chamber diameter and anterior wall thickness, HR, AoD). The mutant groups with most differences to WTs were 16p11.2 (deletion), Fmr1(−/−), Arid1b(+/−). The mutant groups with most differences from other mutant groups were 16p11.2 (deletion), Sgsh(+/−), Fmr1(−/−). Our results recapitulate the associated clinical findings. The characteristic ASD heterogeneity was recapitulated in the cardiac phenotype. The type of abnormal measures (morphological, functional) can highlight common underlying mechanisms. Clinically, knowledge of cardiac abnormalities in ASD can be essential as even non‐lethal abnormalities impact normal development.
Collapse
Affiliation(s)
- Stephania Assimopoulos
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada.,Sickkids Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Christopher Hammill
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada.,Sickkids Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Darren J Fernandes
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada.,Sickkids Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tara Leigh Spencer Noakes
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada.,Sickkids Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Yu-Qing Zhou
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lauryl M J Nutter
- Sickkids Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Centre for Phenogenomics, Toronto, Ontario, Canada
| | - Jacob Ellegood
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada.,Sickkids Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Evdokia Anagnostou
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
| | - John G Sled
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada.,Sickkids Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada.,Sickkids Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Wellcome Centre for Integrative Neuroimaging, The University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Chang CS, Hong SY, Kim SY, Kim YM, Sung JH, Choi SJ, Oh SY, Roh CR, Song J, Huh J, Kang IS. Prevalence of associated extracardiac anomalies in prenatally diagnosed congenital heart diseases. PLoS One 2021; 16:e0248894. [PMID: 33735284 PMCID: PMC7971844 DOI: 10.1371/journal.pone.0248894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/05/2021] [Indexed: 12/01/2022] Open
Abstract
Objective To investigate the prevalence of extracardiac anomalies (ECA) in prenatally diagnosed congenital heart diseases (CHD), and to provide more information for counseling of women with prenatally diagnosed fetal CHD. Methods This was a retrospective cohort study of 791 cases of fetal CHD diagnosed by prenatal ultrasound from January 2005 to April 2018. Associated ECAs included extracardiac structural malformation (ECM), chromosomal anomaly, and 22q11.2 microdeletion. CHD was classified into 10 groups according to a modified anatomic and clinical classification of congenital heart defects. Results The overall prevalence of ECA in our CHD cohort was 28.6% (226/791): ECM, 25.3%; chromosomal anomaly, 11.7%; and 22q11.2 microdeletion, 5.5%. For those with ECM, ventricular septal defect (VSD) had the highest prevalence (34.5%), followed by anomalies of atrioventricular junctions and valves (28.8%) and heterotaxy (26.9%). For those with chromosomal anomaly, anomalies of atrioventricular junctions and valves had the highest prevalence (37.5%), followed by anomalies of atria and interatrial communications (25.0%) and VSD (22.9%). 22q11.2 microdeletion was detected only in those with anomalies of extrapericardial arterial trunks (14.3%) or ventricular outflow tracts (6.4%). Conclusion ECM, chromosomal anomaly, and 22q11.2 microdeletion have different prevalence according to the type of CHD.
Collapse
Affiliation(s)
- Chi-Son Chang
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sir-yeon Hong
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seo-yeon Kim
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yoo-min Kim
- Department of Obstetrics and Gynecology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Ji-Hee Sung
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Suk-Joo Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- * E-mail:
| | - Soo-young Oh
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Cheong-Rae Roh
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jinyoung Song
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - June Huh
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - I-Seok Kang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Associated Chromosomal Abnormalities in Fetuses Diagnosed Prenatally with Right Aortic Arch. CURRENT HEALTH SCIENCES JOURNAL 2021; 47:170-176. [PMID: 34765234 PMCID: PMC8551898 DOI: 10.12865/chsj.47.02.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/20/2021] [Indexed: 11/16/2022]
Abstract
Right aortic arch (RAA) is an abnormal embryologic development of the aorta characterized by its descendance on the right side of the trachea. This anomaly is accompanied often by other intracardiac and extracardiac anomalies and it is also known for potential association with genetic aberrations, most common being 22q11.2 deletion. The aim of the study was to evaluate the incidence of chromosomal anomalies and in particular 22q11.2 deletion in RAA. Moreover, we assessed the prognosis of fetuses with isolated RAA. Our second objective was to evaluate the prevalence of hypoplastic or absent thymus in RAA fetuses diagnosed with 22q11.2 deletion. We conducted a retrospective study of all fetuses with RAA over a period of 10 years diagnosed prenatally in a tertiary referral center in Romania. A detailed ultrasound was obtained in each case. We extracted the cases that were investigated genetically and selected the cases positive for 22q11.2 deletion. These fetuses were followed up until pregnancy termination or birth to confirm the ultrasound findings. Deletion 22q11.2 was present in 23.52% (4/17) cases. The incidence was particularly high when the fetuses presented a small thymus. In conclusion, we believe that all cases of RAA, including when isolated, should be referred for genetic testing and especially 22q11.2 deletion exclusion. Also, we suggest considering hypoplastic thymus to be a soft marker for this deletion.
Collapse
|
4
|
Prenatal screening of DiGeorge (22q11.2 deletion) syndrome by abnormalities of the great arteries among Thai pregnant women. Obstet Gynecol Sci 2020; 63:330-336. [PMID: 32489978 PMCID: PMC7231935 DOI: 10.5468/ogs.2020.63.3.330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/11/2020] [Accepted: 01/30/2020] [Indexed: 12/30/2022] Open
Abstract
Objective 22q11.2DS (deletion syndrome) is one of the common serious anomalies resulting in high perinatal morbidity and mortality rate. Nevertheless, prenatal diagnosis of 22q11.2DS in Southeast Asia has never been described and its prevalence in prenatal series has never been explored. The objective of this study was to describe the experience of prenatal diagnosis of 22q11.2DS in the Thai population and to determine its prevalence among fetuses prenatally diagnosed with abnormalities of the great arteries. Methods A prospective study was conducted on pregnant Thai women prenatally diagnosed with abnormalities of the great arteries in the second trimester. The recruited cases were investigated for fetal 22q11.2 deletion by in situ hybridization with a probe specific to the DiGeorge/VCFS TUPLE 1 region located on chromosome 22 for the locus D22S75, and 22qter for a telomere specific sequence clone as the control region. Results Five out of the 42 (11.9%) fetuses with abnormalities of the great arteries meeting the inclusion criteria were proven to have 22q11.2DS. The most common abnormalities were the tetralogy of Fallot (or variants) and right-sided aortic arch, followed by a thymic hypoplasia. Conclusion As observed in the western countries, we have documented that, among pregnant Thai women, 22q11.2DS is highly prevalent in fetuses with abnormalities of the great arteries (approximately 12%). This information is important when counselling couples to undergo prenatal testing for 22q11.2DS, since this information is vital in the patients' decision of termination or continuation of pregnancy and in a well-prepared management of the affected child.
Collapse
|
5
|
Goldmuntz E. 22q11.2 deletion syndrome and congenital heart disease. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:64-72. [PMID: 32049433 DOI: 10.1002/ajmg.c.31774] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 01/19/2023]
Abstract
The 22q11.2 deletion syndrome has an estimated prevalence of 1 in 4-6,000 livebirths. The phenotype varies widely; the most common features include: facial dysmorphia, hypocalcemia, palate and speech disorders, feeding and gastrointestinal disorders, immunodeficiency, recurrent infections, neurodevelopmental and psychiatric disorders, and congenital heart disease. Approximately 60-80% of patients have a cardiac malformation most commonly including a subset of conotruncal defects (tetralogy of Fallot, truncus arteriosus, interrupted aortic arch type B), conoventricular and/or atrial septal defects, and aortic arch anomalies. Cardiac patients with a 22q11.2 deletion do not generally experience higher mortality upon surgical intervention but suffer more peri-operative complications than their non-syndromic counterparts. New guidelines suggest screening for a 22q11.2 deletion in the patient with tetralogy of Fallot, truncus arteriosus, interrupted aortic arch type B, conoventricular septal defects as well as those with an isolated aortic arch anomaly. Early identification of a 22q11.2 deletion in the neonate or infant when other syndromic features may not be apparent allows for timely parental screening for reproductive counseling and anticipatory evaluation of cardiac and noncardiac features. Screening the at-risk child or adult allows for important age-specific clinical, neurodevelopmental, psychiatric, and reproductive issues to be addressed.
Collapse
Affiliation(s)
- Elizabeth Goldmuntz
- Division of Cardiology, Children's Hospital of Philadelphia, Department of Pediatrics, The Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
6
|
Unolt M, Versacci P, Anaclerio S, Lambiase C, Calcagni G, Trezzi M, Carotti A, Crowley TB, Zackai EH, Goldmuntz E, Gaynor JW, Digilio MC, McDonald-McGinn DM, Marino B. Congenital heart diseases and cardiovascular abnormalities in 22q11.2 deletion syndrome: From well-established knowledge to new frontiers. Am J Med Genet A 2018; 176:2087-2098. [PMID: 29663641 PMCID: PMC6497171 DOI: 10.1002/ajmg.a.38662] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/11/2022]
Abstract
Congenital heart diseases (CHDs) and cardiovascular abnormalities are one of the pillars of clinical diagnosis of 22q11.2 deletion syndrome (22q11.2DS) and still represent the main cause of mortality in the affected children. In the past 30 years, much progress has been made in describing the anatomical patterns of CHD, in improving their diagnosis, medical treatment, and surgical procedures for these conditions, as well as in understanding the underlying genetic and developmental mechanisms. However, further studies are still needed to better determine the true prevalence of CHDs in 22q11.2DS, including data from prenatal studies and on the adult population, to further clarify the genetic mechanisms behind the high variability of phenotypic expression of 22q11.2DS, and to fully understand the mechanism responsible for the increased postoperative morbidity and for the premature death of these patients. Moreover, the increased life expectancy of persons with 22q11.2DS allowed the expansion of the adult population that poses new challenges for clinicians such as acquired cardiovascular problems and complexity related to multisystemic comorbidity. In this review, we provide a comprehensive review of the existing literature about 22q11.2DS in order to summarize the knowledge gained in the past years of clinical experience and research, as well as to identify the remaining gaps in comprehension of this syndrome and the possible future research directions.
Collapse
Affiliation(s)
- Marta Unolt
- Department of Pediatrics and Pediatric Neuropsychiatry, “Sapienza” University of Rome, Rome, Italy
| | - Paolo Versacci
- Department of Pediatrics and Pediatric Neuropsychiatry, “Sapienza” University of Rome, Rome, Italy
| | - Silvia Anaclerio
- Department of Pediatrics and Pediatric Neuropsychiatry, “Sapienza” University of Rome, Rome, Italy
| | - Caterina Lambiase
- Department of Pediatrics and Pediatric Neuropsychiatry, “Sapienza” University of Rome, Rome, Italy
| | - Giulio Calcagni
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Pediatric Hospital, Rome, Italy
| | - Matteo Trezzi
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Pediatric Hospital, Rome, Italy
| | - Adriano Carotti
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Pediatric Hospital, Rome, Italy
| | - Terrence Blaine Crowley
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Elaine H. Zackai
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Elizabeth Goldmuntz
- The Cardiac Center, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - James William Gaynor
- The Cardiac Center, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | | | - Bruno Marino
- Department of Pediatrics and Pediatric Neuropsychiatry, “Sapienza” University of Rome, Rome, Italy
| |
Collapse
|
7
|
Duplication and Deletion of 22q11 Associated with Anomalous Pulmonary Venous Connection. Pediatr Cardiol 2018; 39:585-590. [PMID: 29279955 DOI: 10.1007/s00246-017-1794-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 12/05/2017] [Indexed: 10/18/2022]
Abstract
Anomalous pulmonary venous connection (APVC) is an uncommon congenital anomaly in which pulmonary venous blood flows directly into the right side of the heart or into the systemic veins. To identify whether there is any association between 22q11 CNVs and APVC, we analyzed the clinical data of 86 APVC patients and then studied the CNVs of 22q11 in 86 sporadic APVC patients by multiplex ligation-dependent probe amplification. The results showed that two patients carried the CNVs of 22q11, one patient had the deletion of 22q11 and the other had the duplication of 22q11. The incidence was significantly higher than that in the normal population (P < 0.01) that suggests a possible etiologic association between the duplication or deletion of 22q11 and the APVC in our patients.
Collapse
|
8
|
CNNdel: Calling Structural Variations on Low Coverage Data Based on Convolutional Neural Networks. BIOMED RESEARCH INTERNATIONAL 2017. [PMID: 28630866 PMCID: PMC5467383 DOI: 10.1155/2017/6375059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Many structural variations (SVs) detection methods have been proposed due to the popularization of next-generation sequencing (NGS). These SV calling methods use different SV-property-dependent features; however, they all suffer from poor accuracy when running on low coverage sequences. The union of results from these tools achieves fairly high sensitivity but still produces low accuracy on low coverage sequence data. That is, these methods contain many false positives. In this paper, we present CNNdel, an approach for calling deletions from paired-end reads. CNNdel gathers SV candidates reported by multiple tools and then extracts features from aligned BAM files at the positions of candidates. With labeled feature-expressed candidates as a training set, CNNdel trains convolutional neural networks (CNNs) to distinguish true unlabeled candidates from false ones. Results show that CNNdel works well with NGS reads from 26 low coverage genomes of the 1000 Genomes Project. The paper demonstrates that convolutional neural networks can automatically assign the priority of SV features and reduce the false positives efficaciously.
Collapse
|
9
|
Neofytou MC, Tsangaras K, Kypri E, Loizides C, Ioannides M, Achilleos A, Mina P, Keravnou A, Sismani C, Koumbaris G, Patsalis PC. Targeted capture enrichment assay for non-invasive prenatal testing of large and small size sub-chromosomal deletions and duplications. PLoS One 2017; 12:e0171319. [PMID: 28158220 PMCID: PMC5291539 DOI: 10.1371/journal.pone.0171319] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 01/18/2017] [Indexed: 02/06/2023] Open
Abstract
Noninvasive prenatal testing (NIPT) using whole genome and targeted sequencing has become increasingly accepted for clinical detection of Trisomy 21 and sex chromosome aneuploidies. Few studies have shown that sub-chromosomal deletions or duplications associated with genetic syndromes can also be detected in the fetus noninvasively. There are still limitations on these methodologies such as the detection of variants of unknown clinical significance, high number of false positives, and difficulties to detect small aberrations. We utilized a recently developed targeted sequencing approach for the development of a NIPT assay, for large and small size deletions/duplications, which overcomes these existing limitations. Artificial pregnancies with microdeletion/microduplication syndromes were created by spiking DNA from affected samples into cell free DNA (cfDNA) from non-pregnant samples. Unaffected spiked samples and normal pregnancies were used as controls. Target Capture Sequences (TACS) for seven syndromes were designed and utilized for targeted capture enrichment followed by sequencing. Data was analyzed using a statistical pipeline to identify deletions or duplications on targeted regions. Following the assay development a proof of concept study using 33 normal pregnancies, 21 artificial affected and 17 artificial unaffected pregnancies was carried out to test the sensitivity and specificity of the assay. All 21 abnormal spiked-in samples were correctly classified as subchromosomal aneuploidies while the 33 normal pregnancies or 17 normal spiked-in samples resulted in a false positive result. We have developed an NIPT assay for the detection of sub-chromosomal deletions and duplications using the targeted capture enrichment technology. This assay demonstrates high accuracy, high read depth of the genomic region of interest, and can identify deletions/duplications as small as 0.5 Mb. NIPT of fetal microdeletion/microduplication syndromes can be of enormous benefit in the management of pregnancies at risk both for prospective parents and health care providers.
Collapse
Affiliation(s)
- Maria C. Neofytou
- Translational Genetics Team, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | - Elena Kypri
- Translational Genetics Team, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- NIPD Genetics Ltd, Nicosia, Cyprus
| | | | | | | | | | - Anna Keravnou
- Translational Genetics Team, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Carolina Sismani
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - George Koumbaris
- Translational Genetics Team, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- NIPD Genetics Ltd, Nicosia, Cyprus
| | - Philippos C. Patsalis
- Translational Genetics Team, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- NIPD Genetics Ltd, Nicosia, Cyprus
- * E-mail:
| |
Collapse
|
10
|
Dugoff L, Mennuti MT, McDonald-McGinn DM. The benefits and limitations of cell-free DNA screening for 22q11.2 deletion syndrome. Prenat Diagn 2016; 37:53-60. [DOI: 10.1002/pd.4864] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 06/14/2016] [Accepted: 06/16/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Lorraine Dugoff
- Department of OB/GYN, Divisions of Reproductive Genetics and Maternal Fetal Medicine; University of Pennsylvania; Philadelphia PA USA
| | - Michael T. Mennuti
- Department of OB/GYN, Divisions of Reproductive Genetics and Maternal Fetal Medicine; University of Pennsylvania; Philadelphia PA USA
| | - Donna M. McDonald-McGinn
- Division of Human Genetics, 22q and You Center and Clinical Genetics Center, The Children's Hospital of Philadelphia, and the Department of Pediatrics; The Perelman School of Medicine of the University of Pennsylvania; Philadelphia PA USA
| |
Collapse
|
11
|
Current Status of Testing for Microdeletion Syndromes and Rare Autosomal Trisomies Using Cell-Free DNA Technology. Obstet Gynecol 2016; 126:1095-1099. [PMID: 26444108 DOI: 10.1097/aog.0000000000001091] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Noninvasive prenatal testing using cell-free DNA in maternal blood for trisomy 21 was introduced in 2011. This technology has continuously evolved with the addition of screening for trisomy 18 and trisomy 13 followed by the inclusion of sex chromosome aneuploidies. Expanded noninvasive prenatal test panels have recently become available, which enable screening for microdeletion syndromes such as the 22q11.2 deletion (associated with the velocardiofacial syndrome) and others. However, the performance data for these microdeletion syndromes are derived from a small number of samples, mostly generated in vitro. Rigorous performance evaluation, as was done at least for trisomy 21 testing using cell-free DNA analysis, is difficult to perform given the rarity of each condition. In addition, detection rates may vary considerably depending on deletion size. Importantly, positive predictive values (PPVs), strongly influenced by the low prevalence, are expected to be significantly lower than 10% for most conditions. Thus, screening in an average-risk population is likely to have many more false-positives than affected cases detected. Conversely, testing in a high-risk population such as fetuses with cardiac anomalies may have higher PPVs, but a negative result needs to be considered carefully as a result of uncertain information about detection rates and a significant residual risk for other copy number variants and single gene disorders. This article integrates current knowledge on cell-free DNA testing for microdeletions with the aim to assist clinicians and policymakers in designing optimal programs for screening in pregnancy.
Collapse
|
12
|
Prenatal diagnosis of 22q11.2 deletion syndrome associated with right aortic arch, left ductus arteriosus, cardiomegaly, and pericardial effusion. Taiwan J Obstet Gynecol 2016; 55:117-20. [DOI: 10.1016/j.tjog.2015.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2015] [Indexed: 12/13/2022] Open
|
13
|
Affiliation(s)
- Ba-Da Jeong
- Department of Obstetrics and Gynecology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Hye-Sung Won
- Department of Obstetrics and Gynecology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|