1
|
Zhang M, Liu Y, Li Z, She Z, Chai M, Aslam M, He Q, Huang Y, Chen F, Chen H, Song S, Wang B, Cai H, Qin Y. The bZIP transcription factor GmbZIP15 facilitates resistance against Sclerotinia sclerotiorum and Phytophthora sojae infection in soybean. iScience 2021; 24:102642. [PMID: 34151234 PMCID: PMC8188564 DOI: 10.1016/j.isci.2021.102642] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/07/2021] [Accepted: 05/20/2021] [Indexed: 01/22/2023] Open
Abstract
Soybean, one of the most valuable oilseed crops, is under constant pressure from pathogens. bZIP transcription factors (TFs) composing one of the largest TF families in plants have diverse functions. Biochemical and physiological analyses were performed to characterize the regulatory roles of soybean bZIP TF GmbZIP15 in response to pathogens. We found that transgenic soybean plants overexpressing GmbZIP15 has increased resistance against Sclerotinia sclerotiorum and Phytophthora sojae. Besides, GmbZIP15 regulates pathogen response by modulating the antioxidant defense system and phytohormone signaling. In addition, we performed chromatin immunoprecipitation sequencing to identify the downstream genes of GmbZIP15 in response to S. sclerotiorum and found that GmbZIP15 can activate or repress the expression of defense-related genes through direct promoter binding. Taken together, these results indicate that GmbZIP15 plays a positive role in pathogen resistance in soybean, and this activity may be dependent on phytohormone signaling. GmbZIP15 improves resistance against pathogen GmbZIP15 modulates the antioxidant defense system GmbZIP15 regulates phytohormone signaling GmbZIP15 can direct bind to G-box
Collapse
Affiliation(s)
- Man Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of Life Sciences, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Yanhui Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of Life Sciences, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Zixian Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of Life Sciences, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Zeyuan She
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Mengnan Chai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of Life Sciences, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Mohammad Aslam
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Qing He
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of Life Sciences, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Youmei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of Life Sciences, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Fangqian Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of Life Sciences, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Huihuang Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of Life Sciences, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Shikui Song
- Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Bingrui Wang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanyang Cai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of Life Sciences, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China
| | - Yuan Qin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of Life Sciences, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| |
Collapse
|
5
|
Fu GM, Shi SP, Ip FC, Pang HH, Ip NY. A new carotenoid glycoside from Rehmannia glutinosa. Nat Prod Res 2011; 25:1213-8. [DOI: 10.1080/14786419.2010.514268] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Guang-Miao Fu
- a Department of Biochemistry , State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, Biotechnology Research Institute, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | - She-Po Shi
- a Department of Biochemistry , State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, Biotechnology Research Institute, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | - Fanny C.F. Ip
- a Department of Biochemistry , State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, Biotechnology Research Institute, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | - Hai-Hong Pang
- a Department of Biochemistry , State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, Biotechnology Research Institute, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | - Nancy Y. Ip
- a Department of Biochemistry , State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, Biotechnology Research Institute, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
7
|
Srividhya R, Jyothilakshmi V, Arulmathi K, Senthilkumaran V, Kalaiselvi P. Attenuation of senescence-induced oxidative exacerbations in aged rat brain by (-)-epigallocatechin-3-gallate. Int J Dev Neurosci 2007; 26:217-23. [PMID: 18207349 DOI: 10.1016/j.ijdevneu.2007.12.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 11/21/2007] [Accepted: 12/06/2007] [Indexed: 02/03/2023] Open
Abstract
Aging is a complex biological phenomenon which involves free radicals and oxidative stress. Brain is more susceptible and vulnerable to oxidative damage due to its high-polyunsaturated fatty acid content and high rate of aerobic metabolism. Since the antioxidant defense system is diminished during aging, antioxidant supplementation might be a protective strategy against age-associated oxidative damage. The present study evaluates the antioxidant potential of (-)-epigallocatechin-3-gallate (EGCG), a major polyphenol present in green tea against age-associated oxidative damage in rat brain. Male albino rats of Wistar strain were used in the study. Group I (young) and Group II (aged) rats received saline alone orally for 30 days. Group III (young) and Group IV (aged) rats received EGCG (2mg/kg body weight/day) orally for 30 days. Antioxidant status and oxidative damage were assessed. EGCG brought about an augmentation in the activities of enzymic antioxidants like superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glucose-6-phosphate dehydrogenase and improved the non-enzymic antioxidants like tocopherol, ascorbic acid and glutathione. EGCG ameliorated the malondialdehyde and protein carbonyl levels. Thus, EGCG has emerged out as a good antioxidant neutraceutical and a neuroprotective agent in alleviating the age-associated oxidative damage in aged rat brain.
Collapse
Affiliation(s)
- Ravichandran Srividhya
- Department of Medical Biochemistry, Dr. A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600113, India
| | | | | | | | | |
Collapse
|
8
|
Kim SY, Lim JH, Park MR, Kim YJ, Park TI, Seo YW, Choi KG, Yun SJ. Enhanced Antioxidant Enzymes Are Associated with Reduced Hydrogen Peroxide in Barley Roots under Saline Stress. BMB Rep 2005; 38:218-24. [PMID: 15826500 DOI: 10.5483/bmbrep.2005.38.2.218] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antioxidant enzymes are related to the resistance to various abiotic stresses including salinity. Barley is relatively tolerant to saline stress among crop plants, but little information is available on barley antioxidant enzymes under salinity stress. We investigated temporal and spatial responses of activities and isoform profiles of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), non-specific peroxidase (POX), and glutathione reductase (GR) to saline stress in barley seedlings treated with 200 mM NaCl for 0, 1, 2, 5 days, respectively. In the control plant, hydrogen peroxide content was about 2-fold higher in the root than in the shoot. Under saline stress, hydrogen peroxide content was decreased drastically by 70% at 2 d after NaCl treatment (DAT) in the root. In the leaf, however, the content was remained unchanged by 2 DAT and increased about 14 % at 5 DAT. In general, the activities of antioxidant enzymes were increased in the root and shoot under saline stress. But the increase was more significant and consistent in the root. The activities of SOD, CAT, APX, POX, and GR were increased significantly in the root within 1 DAT, and various elevated levels were maintained by 5 DAT. Among the antioxidant enzymes, CAT activity was increased the most drastically. The significant increase in the activities of SOD, CAT, APX, POX, and GR in the NaCl-stressed barley root was highly correlated with the increased expression of the constitutive isoforms as well as the induced ones. The hydrogen peroxide content in the root.
Collapse
Affiliation(s)
- Sang Yong Kim
- Division of Biological Resources Sciences, and Institute of Agricultural Science and Technology, Chonbuk Natl University, Chonju 561-756, Korea
| | | | | | | | | | | | | | | |
Collapse
|