1
|
Macošek J, Mas G, Hiller S. Redefining Molecular Chaperones as Chaotropes. Front Mol Biosci 2021; 8:683132. [PMID: 34195228 PMCID: PMC8237284 DOI: 10.3389/fmolb.2021.683132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/20/2021] [Indexed: 01/27/2023] Open
Abstract
Molecular chaperones are the key instruments of bacterial protein homeostasis. Chaperones not only facilitate folding of client proteins, but also transport them, prevent their aggregation, dissolve aggregates and resolve misfolded states. Despite this seemingly large variety, single chaperones can perform several of these functions even on multiple different clients, thus suggesting a single biophysical mechanism underlying. Numerous recently elucidated structures of bacterial chaperone–client complexes show that dynamic interactions between chaperones and their client proteins stabilize conformationally flexible non-native client states, which results in client protein denaturation. Based on these findings, we propose chaotropicity as a suitable biophysical concept to rationalize the generic activity of chaperones. We discuss the consequences of applying this concept in the context of ATP-dependent and -independent chaperones and their functional regulation.
Collapse
|
2
|
Protective Roles of Cytosolic and Plastidal Proteasomes on Abiotic Stress and Pathogen Invasion. PLANTS 2020; 9:plants9070832. [PMID: 32630761 PMCID: PMC7412383 DOI: 10.3390/plants9070832] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 01/18/2023]
Abstract
Protein malfunction is typically caused by abiotic stressors. To ensure cell survival during conditions of stress, it is important for plant cells to maintain proteins in their respective functional conformation. Self-compartmentalizing proteases, such as ATP-dependent Clp proteases and proteasomes are designed to act in the crowded cellular environment, and they are responsible for degradation of misfolded or damaged proteins within the cell. During different types of stress conditions, the levels of misfolded or orphaned proteins that are degraded by the 26S proteasome in the cytosol and nucleus and by the Clp proteases in the mitochondria and chloroplasts increase. This allows cells to uphold feedback regulations to cellular-level signals and adjust to altered environmental conditions. In this review, we summarize recent findings on plant proteolytic complexes with respect to their protective functions against abiotic and biotic stressors.
Collapse
|
3
|
Mulaudzi-Masuku T, Mutepe RD, Mukhoro OC, Faro A, Ndimba B. Identification and characterization of a heat-inducible Hsp70 gene from Sorghum bicolor which confers tolerance to thermal stress. Cell Stress Chaperones 2015; 20:793-804. [PMID: 26072391 PMCID: PMC4529866 DOI: 10.1007/s12192-015-0591-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 04/10/2015] [Accepted: 04/13/2015] [Indexed: 11/24/2022] Open
Abstract
This study describes the first detailed molecular characterization of the heat shock protein 70 (Hsp70) gene from Sorghum bicolor, MN1618 designated as SbHsp70-1. The full-length cDNA of SbHsp70-1 consists of 2524 bp with a 1950 bp open reading frame, which encodes a protein of 649 amino acids. SbHsp70-1 is a cytoplasmic protein with high homology to other plant Hsp70s, especially grain crops. Recombinant SbHsp70-1 was able to bind and hydrolyse ATP in a dose-dependent manner, suggesting that SbHsp70-1 functions as an ATPase. Immunoblot assays showed that the expression of SbHsp70-1 is induced at temperatures of 37, 45, and 4 °C but reduced at 42 °C. In addition, the SbHsp70-1 mRNA transcript is constitutively expressed in both leaves and stem but is significantly increased upon heat shock at 42 °C. Upon cold shock at 4 °C, SbHsp70-1 mRNA transcript level increased in the leaf, but no significant change was observed in the stem. In addition, expression of the pET28a-SbHsp70-1 construct in Escherichia coli cells under heat stress resulted in their survival even at higher temperature (65 °C). Our results suggest that SbHsp70-1 is a heat-inducible protein that confer thermal tolerance to bacterial cells and can be claimed as a promising target to study stress tolerance in crops.
Collapse
Affiliation(s)
- Takalani Mulaudzi-Masuku
- />Proteomics Research and Services Unit, Department of Biotechnology, University of the Western Cape, Level 2—New Life Sciences Building, Modderdam Road, Private Bag X17, Bellville, 7535 Cape Town South Africa
- />Proteomics Unit, Agricultural Research Council, Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch, 7599 South Africa
| | - Rendani Daphney Mutepe
- />Proteomics Research and Services Unit, Department of Biotechnology, University of the Western Cape, Level 2—New Life Sciences Building, Modderdam Road, Private Bag X17, Bellville, 7535 Cape Town South Africa
- />Proteomics Unit, Agricultural Research Council, Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch, 7599 South Africa
| | - Ofhani Christopher Mukhoro
- />Proteomics Research and Services Unit, Department of Biotechnology, University of the Western Cape, Level 2—New Life Sciences Building, Modderdam Road, Private Bag X17, Bellville, 7535 Cape Town South Africa
| | - Andrew Faro
- />Proteomics Research and Services Unit, Department of Biotechnology, University of the Western Cape, Level 2—New Life Sciences Building, Modderdam Road, Private Bag X17, Bellville, 7535 Cape Town South Africa
| | - Bongani Ndimba
- />Proteomics Research and Services Unit, Department of Biotechnology, University of the Western Cape, Level 2—New Life Sciences Building, Modderdam Road, Private Bag X17, Bellville, 7535 Cape Town South Africa
- />Proteomics Unit, Agricultural Research Council, Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch, 7599 South Africa
| |
Collapse
|
4
|
Liao X, Lu HL, Fang W, St Leger RJ. Overexpression of a Metarhizium robertsii HSP25 gene increases thermotolerance and survival in soil. Appl Microbiol Biotechnol 2013; 98:777-83. [PMID: 24265026 DOI: 10.1007/s00253-013-5360-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/16/2013] [Accepted: 10/21/2013] [Indexed: 12/19/2022]
Abstract
Temperature extremes are an important adverse factor limiting the effectiveness of microbial pest control agents. They reduce virulence and persistence in the plant root-colonizing insect pathogen Metarhizium robertsii. Small heat shock proteins have been shown to confer thermotolerance in many organisms. In this study, we report on the cloning and characterization of a small heat shock protein gene hsp25 from M. robertsii. hsp25 expression was upregulated when the fungus was grown at extreme temperatures (4, 35, and 42 °C) or in the presence of oxidative or osmotic agents. Expression of hsp25 in Escherichia coli increased bacterial thermotolerance confirming that hsp25 encodes a functional heat shock protein. Overexpressing hsp25 in M. robertsii increased fungal growth under heat stress either in nutrient-rich medium or on locust wings and enhanced the tolerance of heat shock-treated conidia to osmotic stress. In addition, overexpression of hsp25 increased the persistence of M. robertsii in rhizospheric soils in outdoor microcosms, though it did not affect survival in bulk soil, indicating that M. robertsii's survival in soil is dependent on interactions with plant roots.
Collapse
Affiliation(s)
- Xinggang Liao
- Department of Entomology, University of Maryland, College Park, MD, 20742, USA,
| | | | | | | |
Collapse
|
5
|
Parrotta L, Cresti M, Cai G. Heat-shock protein 70 binds microtubules and interacts with kinesin in tobacco pollen tubes. Cytoskeleton (Hoboken) 2013; 70:522-37. [PMID: 24039249 DOI: 10.1002/cm.21134] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 08/15/2013] [Accepted: 08/21/2013] [Indexed: 11/11/2022]
Abstract
The heat-shock proteins of 70 kDa are a family of ubiquitously expressed proteins important for protein folding. Heat-shock protein 70 assists other nascent proteins to achieve the spatial structure and ultimately helps the cell to protect against stress factors, such as heat. These proteins are localized in different cellular compartments and are associated with the cytoskeleton. We identified a heat-shock protein 70 isoform in the pollen tube of tobacco that binds to microtubules in an ATP-dependent manner. The heat-shock protein 70 was identified as part of the so-called ATP-MAP (ATP-dependent microtubule-associated protein) fraction, which also includes the 90-kDa kinesin, a mitochondria-associated motor protein. The identity of heat-shock protein 70 was validated by immunological assays and mass spectrometry. Sequence analysis showed that this heat-shock protein 70 is more similar to specific heat-shock proteins of Arabidopsis than to corresponding proteins of tobacco. Two-dimensional electrophoresis indicated that this heat-shock protein 70 isoform only is part of the ATP-MAP fraction and that is associated with the mitochondria of pollen tubes. Sedimentation assays showed that the binding of heat-shock protein 70 to microtubules is not affected by AMPPNP but it increases in the presence of the 90-kDa kinesin. Binding of heat-shock protein 70 to microtubules occurs only partially in the presence of ATP but it does not occur if, in addition to ATP, the 90-kDa kinesin is also present. Data suggest that the binding (but not the release) of heat-shock protein 70 to microtubules is facilitated by the 90-kDa kinesin.
Collapse
Affiliation(s)
- Luigi Parrotta
- Dipartimento di Scienze della Vita, Università di Siena, via Mattioli 4, 53100, Siena, Italy
| | | | | |
Collapse
|
6
|
Rao JLUM, Reddy PS, Mishra RN, Gupta D, Sahal D, Tuteja N, Sopory SK, Reddy MK. Thermo and pH stable ATP-independent chaperone activity of heat-inducible Hsp70 from Pennisetum glaucum. PLANT SIGNALING & BEHAVIOR 2010; 5:110-21. [PMID: 20023401 PMCID: PMC2884110 DOI: 10.4161/psb.5.2.10547] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 11/09/2009] [Indexed: 05/24/2023]
Abstract
Heat shock proteins (Hsps) are a class of molecular chaperones that play an essential role in preserving cellular functions under stressful conditions. The over production of recombinant proteins often causes cellular stress that results in aggregation/misfolding of proteins, which sometimes leads to the formation of inclusion bodies. Here we report the cloning and characterization of heat-inducible PgHsp70 from Pennisetum glaucum, a heat and drought tolerant plant that showed stability and chaperone activity at elevated temperatures. The predicted amino acid sequence of PgHsp70 revealed a high homology with Hsp70 from other plants, and the overall 3D structure homology modeling is similar to that of the constitutively expressed bovine cytosolic Heat Shock Cognate (HSC)-70. The purified recombinant protein had an apparent molecular mass of 70 kDa and displayed optimal chaperone activity at 50 degrees C, and pH 8.0. Under these conditions, the T(1/2) of PgHsp70 increased from 10 to 15 h in the presence of glycerol. The PgHsp70 exhibited a higher chaperone activity towards glutamate dehydrogenase than alcohol dehydrogenase. The expression of recombinant carbonic anhydrase (CA) in E. coli in a catalytically active soluble form rather than in inclusion bodies was made feasible by co-expression of PgHsp70. Circular dichroism (CD) studies of the recombinant PgHsp70 did not reveal any discernible changes in the alpha-helix content, with increase in temperature from 35 to 85 degrees C, thus suggesting a critical role of alpha-helix content in maintaining the chaperone activity.
Collapse
Affiliation(s)
- J L Uma Maheswar Rao
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Zhang ZL, Zhu JH, Zhang QQ, Cai YB. Molecular characterization of an ethephon-induced Hsp70 involved in high and low-temperature responses in Hevea brasiliensis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:954-9. [PMID: 19577934 DOI: 10.1016/j.plaphy.2009.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 05/04/2009] [Accepted: 06/05/2009] [Indexed: 05/08/2023]
Abstract
Hsp70s have been shown to play important roles in helping cells to cope with adverse environments, especially in response to temperature. In this study a novel ethephon-induced Hsp gene, designated as HbHsp70, was isolated from Hevea brasiliensis. The HbHsp70 cDNA contained a 1965 bp open reading frame encoding 655 amino acids. The deduced HbHsp70 protein showed high identities to Hsp70s from other plants. Expression studies revealed more significant accumulation of HbHsp70 transcripts in leaves and stems than in roots, barks and latex. The transcription of HbHsp70 was induced by ethephon, heat treatment and low temperature stress, whereas jasmonic acid had little effects. Recombinant HbHsp70 was expressed in Escherichia coli and purified by Ni-NTA affinity chromatography. Measuring the light scattering of luciferase (Luc) revealed that HbHsp70 prevents the aggregation of luc during high-temperature stress. In vitro experiments showed that HbHsp70 had protective functions not only against heat stress but also against chilling stress. All these data suggest that HbHsp70 may play roles in responses to heat shock and low temperature in H. brasiliensis.
Collapse
Affiliation(s)
- Zhi-Li Zhang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | | | | | | |
Collapse
|