1
|
Parashar S, Kaushik A, Ambasta RK, Kumar P. E2 conjugating enzymes: A silent but crucial player in ubiquitin biology. Ageing Res Rev 2025; 108:102740. [PMID: 40194666 DOI: 10.1016/j.arr.2025.102740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/09/2025]
Abstract
E2 conjugating enzymes serve as the linchpin of the Ubiquitin-Proteasome System (UPS), facilitating ubiquitin (Ub) transfer to substrate proteins and regulating diverse processes critical to cellular homeostasis. The interaction of E2s with E1 activating enzymes and E3 ligases singularly positions them as middlemen of the ubiquitin machinery that guides protein turnover. Structural determinants of E2 enzymes play a pivotal role in these interactions, enabling precise ubiquitin transfer and substrate specificity. Regulation of E2 enzymes is tightly controlled through mechanisms such as post-translational modifications (PTMs), allosteric control, and gene expression modulation. Specific residues that undergo PTMs highlight their impact on E2 function and their role in ubiquitin dynamics. E2 enzymes also cooperate with deubiquitinases (DUBs) to maintain proteostasis. Design of small molecule inhibitors to modulate E2 activity is emerging as promising avenue to restrict ubiquitination as a potential therapeutic intervention. Additionally, E2 enzymes have been implicated in the pathogenesis and progression of neurodegenerative disorders (NDDs), where their dysfunction contributes to disease mechanisms. In summary, examining E2 enzymes from structural and functional perspectives offers potential to advance our understanding of cellular processes and assist in discovery of new therapeutic targets.
Collapse
Affiliation(s)
- Somya Parashar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Aastha Kaushik
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India.
| |
Collapse
|
2
|
Abstract
Ubiquitin-conjugating enzymes (E2s) are the central players in the trio of enzymes responsible for the attachment of ubiquitin (Ub) to cellular proteins. Humans have ∼40 E2s that are involved in the transfer of Ub or Ub-like (Ubl) proteins (e.g., SUMO and NEDD8). Although the majority of E2s are only twice the size of Ub, this remarkable family of enzymes performs a variety of functional roles. In this review, we summarize common functional and structural features that define unifying themes among E2s and highlight emerging concepts in the mechanism and regulation of E2s.
Collapse
|
3
|
Cell Adhesion Molecules and Ubiquitination-Functions and Significance. BIOLOGY 2015; 5:biology5010001. [PMID: 26703751 PMCID: PMC4810158 DOI: 10.3390/biology5010001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/02/2015] [Accepted: 12/15/2015] [Indexed: 12/11/2022]
Abstract
Cell adhesion molecules of the immunoglobulin (Ig) superfamily represent the biggest group of cell adhesion molecules. They have been analyzed since approximately 40 years ago and most of them have been shown to play a role in tumor progression and in the nervous system. All members of the Ig superfamily are intensively posttranslationally modified. However, many aspects of their cellular functions are not yet known. Since a few years ago it is known that some of the Ig superfamily members are modified by ubiquitin. Ubiquitination has classically been described as a proteasomal degradation signal but during the last years it became obvious that it can regulate many other processes including internalization of cell surface molecules and lysosomal sorting. The purpose of this review is to summarize the current knowledge about the ubiquitination of cell adhesion molecules of the Ig superfamily and to discuss its potential physiological roles in tumorigenesis and in the nervous system.
Collapse
|
4
|
Kim JH, Choi JS, Kim S, Kim K, Myung PK, Park SG, Seo YS, Park BC. Synergistic effect of two E2 ubiquitin conjugating enzymes in SCF(hFBH1) catalyzed polyubiquitination. BMB Rep 2015; 48:25-9. [PMID: 24667174 PMCID: PMC4345638 DOI: 10.5483/bmbrep.2015.48.1.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 03/24/2014] [Accepted: 03/24/2014] [Indexed: 11/20/2022] Open
Abstract
Ubiquitination is a post translational modification which mostly links with proteasome dependent protein degradation. This process has been known to play pivotal roles in the number of biological events including apoptosis, cell signaling, transcription and translation. Although the process of ubiquitination has been studied extensively, the mechanism of polyubiquitination by multi protein E3 ubiquitin ligase, SCF complex remains elusive. In the present study, we identified UbcH5a as a novel stimulating factor for poly-ubiquitination catalyzed by SCFhFBH1 using biochemical fractionations and MALDI-TOF. Moreover, we showed that recombinant UbcH5a and Cdc34 synergistically stimulate SCFhFBH1 catalyzed polyubiquitination in vitro. These data may provide an important cue to understand the mechanism how the SCF complex efficiently polyubiquitinates target substrates. [BMB Reports 2015; 48(1): 25-29]
Collapse
Affiliation(s)
- Jeong-Hoon Kim
- Targeted Gene Regulation Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 305-333; Department of Functional Genomics, University of Science and Technology (UST), Daejeon 305-350, Korea
| | - Jin Sun Choi
- Medical Proteomics Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 305-333; College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea
| | - Sunhong Kim
- Targeted Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Chungbuk 363-883, Korea
| | - Kidae Kim
- Medical Proteomics Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 305-333, Korea
| | - Pyung Keun Myung
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea
| | - Sung Goo Park
- Medical Proteomics Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 305-333, Korea
| | - Yeon-Soo Seo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Byoung Chul Park
- Medical Proteomics Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 305-333, Korea
| |
Collapse
|
5
|
Choi YS, Lee YJ, Lee SY, Shi L, Ha JH, Cheong HK, Cheong C, Cohen RE, Ryu KS. Differential ubiquitin binding by the acidic loops of Ube2g1 and Ube2r1 enzymes distinguishes their Lys-48-ubiquitylation activities. J Biol Chem 2014; 290:2251-63. [PMID: 25471371 DOI: 10.1074/jbc.m114.624809] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ubiquitin E2 enzymes, Ube2g1 and Ube2r1, are able to synthesize Lys-48-linked polyubiquitins without an E3 ligase but how that is accomplished has been unclear. Although both E2s contain essential acidic loops, only Ube2r1 requires an additional C-terminal extension (184-196) for efficient Lys-48-ubiquitylation activity. The presence of Tyr-102 and Tyr-104 in the Ube2g1 acidic loop enhanced both ubiquitin binding and Lys-48-ubiquitylation and distinguished Ube2g1 from the otherwise similar truncated Ube2r1(1-183) (Ube2r1C). Replacement of Gln-105-Ser-106-Gly-107 in the acidic loop of Ube2r1C (Ube2r1C(YGY)) by the corresponding residues from Ube2g1 (Tyr-102-Gly-103-Tyr-104) increased Lys-48-ubiquitylation activity and ubiquitin binding. Two E2∼UB thioester mimics (oxyester and disulfide) were prepared to characterize the ubiquitin binding activity of the acidic loop. The oxyester but not the disulfide derivative was found to be a functional equivalent of the E2∼UB thioester. The ubiquitin moiety of the Ube2r1C(C93S)-[(15)N]UB(K48R) oxyester displayed two-state conformational exchange, whereas the Ube2r1C(C93S/YGY)-[(15)N]UB(K48R) oxyester showed predominantly one state. Together with NMR studies that compared UB(K48R) oxyesters of the wild-type and the acidic loop mutant (Y102G/Y104G) forms of Ube2g1, in vitro ubiquitylation assays with various mutation forms of the E2s revealed how the intramolecular interaction between the acidic loop and the attached donor ubiquitin regulates Lys-48-ubiquitylation activity.
Collapse
Affiliation(s)
- Yun-Seok Choi
- From the Division of Magnetic Resonance, Korea Basic Science Institute Ochang Campus, Cheongwon-Gun, Ochang-Eup, Yangcheong-Ri 804-1, Chungcheongbuk-Do 363-883, Department of Bio-Analytical Science, University of Science and Technology, Daejon 305-333, South Korea, Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870
| | - Yun-Ju Lee
- From the Division of Magnetic Resonance, Korea Basic Science Institute Ochang Campus, Cheongwon-Gun, Ochang-Eup, Yangcheong-Ri 804-1, Chungcheongbuk-Do 363-883
| | - Seo-Yeon Lee
- From the Division of Magnetic Resonance, Korea Basic Science Institute Ochang Campus, Cheongwon-Gun, Ochang-Eup, Yangcheong-Ri 804-1, Chungcheongbuk-Do 363-883
| | - Lei Shi
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, and
| | - Jung-Hye Ha
- From the Division of Magnetic Resonance, Korea Basic Science Institute Ochang Campus, Cheongwon-Gun, Ochang-Eup, Yangcheong-Ri 804-1, Chungcheongbuk-Do 363-883, Department of Bio-Analytical Science, University of Science and Technology, Daejon 305-333, South Korea
| | - Hae-Kap Cheong
- From the Division of Magnetic Resonance, Korea Basic Science Institute Ochang Campus, Cheongwon-Gun, Ochang-Eup, Yangcheong-Ri 804-1, Chungcheongbuk-Do 363-883
| | - Chaejoon Cheong
- From the Division of Magnetic Resonance, Korea Basic Science Institute Ochang Campus, Cheongwon-Gun, Ochang-Eup, Yangcheong-Ri 804-1, Chungcheongbuk-Do 363-883, Department of Bio-Analytical Science, University of Science and Technology, Daejon 305-333, South Korea
| | - Robert E Cohen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870
| | - Kyoung-Seok Ryu
- From the Division of Magnetic Resonance, Korea Basic Science Institute Ochang Campus, Cheongwon-Gun, Ochang-Eup, Yangcheong-Ri 804-1, Chungcheongbuk-Do 363-883, Department of Bio-Analytical Science, University of Science and Technology, Daejon 305-333, South Korea,
| |
Collapse
|
6
|
Cytoplasmic domain of NCAM140 interacts with ubiquitin-fold modifier-conjugating enzyme-1 (Ufc1). Exp Cell Res 2014; 324:192-9. [PMID: 24726913 DOI: 10.1016/j.yexcr.2014.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 03/24/2014] [Accepted: 04/02/2014] [Indexed: 11/24/2022]
Abstract
The neural cell adhesion molecule NCAM is implicated in different neurodevelopmental processes and in synaptic plasticity in adult brain. The cytoplasmic domain of NCAM interacts with several cytoskeletal proteins and signaling molecules. To identify novel interaction partners of the cytosolic domain of NCAM a protein macroarray has been performed. We identified the ubiquitin-fold modifier-conjugating enzyme-1 (Ufc1) as an interaction partner of NCAM140. Ufc1 is one of the enzymes involved in modification of proteins with the ubiquitin-like molecule ubiquitin-fold modifier-1 (Ufm1). We also observed a partial co-localization of NCAM140 with Ufc1 and Ufm1 and increased endocytosis of NCAM140 in the presence of Ufm1 suggesting a possible ufmylation of NCAM140 and a potential novel function of Ufm1 for cell surface proteins.
Collapse
|
7
|
Association of the disordered C-terminus of CDC34 with a catalytically bound ubiquitin. J Mol Biol 2011; 407:425-38. [PMID: 21296085 DOI: 10.1016/j.jmb.2011.01.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 01/24/2011] [Accepted: 01/26/2011] [Indexed: 11/24/2022]
Abstract
Cell division cycle protein 34 (CDC34) is a key E2 ubiquitin (Ub)-conjugating enzyme responsible for the polyubiquitination of proteins controlling the G1/S stages of cell division. The acidic C-terminus of the enzyme is required for this function, although there is little structural information providing details for a mechanism. One logical time point involving the C-terminus is the CDC34-Ub thiolester complex that precedes Ub transfer to a substrate. To examine this, we used a CDC34-Ub disulfide complex that structurally mimics the thiolester intermediate. NMR spectroscopy was used to show that the CDC34 C-terminus is disordered but can intramolecularly interact with the catalytically bound Ub. Using chemical shift perturbation analysis, we mapped two interacting regions on the surface of Ub in the CDC34-Ub complex. The first site comprises a hydrophobic patch (typical of other Ub complexes) that associates with the CDC34 catalytic domain. A novel second site, dependent on the C-terminus of CDC34, comprises a lysine-rich surface (K6, K11, K29, and K33) on the opposite face of Ub. Further, NMR experiments show that this interaction is described by two slowly exchanging states-a compact conformation where the C-terminus of CDC34 interacts with bound Ub and an extended structure where the C-terminus is released. This work provides the first structural details that show how the C-terminus of CDC34 might direct a thiolester-bound Ub to control polyubiquitin chain formation.
Collapse
|
8
|
Liu J, Nussinov R. Molecular dynamics reveal the essential role of linker motions in the function of cullin-RING E3 ligases. J Mol Biol 2010; 396:1508-23. [PMID: 20083119 PMCID: PMC2824043 DOI: 10.1016/j.jmb.2010.01.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 01/10/2010] [Accepted: 01/12/2010] [Indexed: 11/30/2022]
Abstract
Tagging proteins by polyubiquitin is a key step in protein degradation. Cullin-RING E3 ubiquitin ligases facilitate ubiquitin transfer from the E2-conjugating enzyme to the substrate, yet crystallography indicates a large distance between the E2 and the substrate, raising the question of how this distance is bridged in the ubiquitin transfer reaction. Here, we demonstrate that the linker motions in the substrate binding proteins can allosterically shorten this distance to facilitate this crucial ubiquitin transfer step and increase this distance to allow polyubiquitination. We performed molecular dynamics simulations for five substrate binding proteins, Skp2, Fbw7, beta-TrCP1, Cdc4, and pVHL, in two forms: bound to their substrates and bound to both substrate and adaptor. The adaptor connects the substrate binding proteins to the cullin. In the bound-to-both forms of all cases, we observed rotations of the substrate binding domain, shortening the gap between the tip of the substrate peptide and the E2 active site by 7-12 A compared with the crystal structures. Overall, together with our earlier simulations of the unbound forms and the bound-to-adaptor forms, the emerging picture is that the maximum distance of 51-73 A between the substrate binding domain and the E2 active site in the modeled unbound forms of these five proteins shrinks to a minimum of 39-49 A in the bound-to-both forms. This large distance range, the result of allosterically controlled linker motions, facilitates ubiquitin transfer and polyubiquitination and as such argues that the cullin-RING E3 ubiquitin ligase is under conformational control. We further observed that substrate binding proteins with multiple substrate acceptor lysines have a larger distance range between the substrate and the E2 as compared with beta-TrCP1, with only one acceptor lysine.
Collapse
Affiliation(s)
- Jin Liu
- Basic Science Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702
| | - Ruth Nussinov
- Basic Science Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
9
|
Song J, Park JK, Lee JJ, Choi YS, Ryu KS, Kim JH, Kim E, Lee KJ, Jeon YH, Kim EE. Structure and interaction of ubiquitin-associated domain of human Fas-associated factor 1. Protein Sci 2010; 18:2265-76. [PMID: 19722279 DOI: 10.1002/pro.237] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Fas-associated factor (FAF)-1 is a multidomain protein that was first identified as a member of the Fas death-inducing signaling complex, but later found to be involved in various biological processes. Although the exact mechanisms are not clear, FAF1 seems to play an important role in cancer, asbestos-induced mesotheliomas, and Parkinson's disease. It interacts with polyubiquitinated proteins, Hsp70, and p97/VCP (valosin-containing protein), in addition to the proteins of the Fas-signaling pathway. We have determined the crystal structure of the ubiquitin-associated domain of human FAF1 (hFAF1-UBA) and examined its interaction with ubiquitin and ubiquitin-like proteins using nuclear magnetic resonance. hFAF1-UBA revealed a canonical three-helical bundle that selectively binds to mono- and di-ubiquitin (Lys48-linked), but not to SUMO-1 (small ubiquitin-related modifier 1) or NEDD8 (neural precursor cell expressed, developmentally down-regulated 8). The interaction between hFAF1-UBA and di-ubiquitin involves hydrophobic interaction accompanied by a transition in the di-ubiquitin conformation. These results provide structural insight into the mechanism of polyubiquitin recognition by hFAF1-UBA.
Collapse
Affiliation(s)
- Jinsue Song
- Magnetic Resonance Team, Korea Basic Science Institute, 804-1 Yangchung-Ri, Ochang, Chungbuk, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
60th residues of ubiquitin and Nedd8 are located out of E2-binding surfaces, but are important for K48 ubiquitin-linkage. FEBS Lett 2009; 583:3323-8. [PMID: 19782077 DOI: 10.1016/j.febslet.2009.09.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 09/13/2009] [Accepted: 09/16/2009] [Indexed: 11/20/2022]
Abstract
Nedd8, a ubiquitin-like modifier, is covalently attached to various proteins. Although Nedd8 has higher sequence identity (57%) with ubiquitin, its conserved K48 residue cannot form covalent linkage with ubiquitin. To decipher the reason why Nedd8 cannot be an effective ubiquitin-acceptor, we compared the non-covalent interaction between Nedd8 and ubiquitin for various E2s using cross-saturation NMR technique. However, both Nedd8 and ubiquitin displayed almost identical non-covalent E2-binding properties. The K60 of Nedd8 was not present at the E2-binding surface, but its mutation to Asn converted Nedd8 into a ubiquitin-acceptor. The N60 ubiquitin mutants also displayed a decreased ubiquitin-accepting activity. These results suggest the presence of an uncharacterized determinant for the K48 ubiquitin-linkage that is not related to non-covalent E2-bindings.
Collapse
|