1
|
Kim HI, Kim GN, Yu KL, Park SH, You JC. Identification of Novel Nucleocapsid Chimeric Proteins Inhibiting HIV-1 Replication. Int J Mol Sci 2022; 23:ijms232012340. [PMID: 36293198 PMCID: PMC9604505 DOI: 10.3390/ijms232012340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
The positive transcription elongation factor b (P-TEFb) is an essential factor that induces transcription elongation and is also negatively regulated by the cellular factor HEXIM1. Previously, the chimeric protein HEXIM1-Tat (HT) was demonstrated to inhibit human immunodeficiency virus-1 (HIV)-1 transcription. In this study, we attempted to develop an improved antiviral protein that specifically binds viral RNA (vRNA) by fusing HT to HIV-1 nucleocapsid (NC). Thus, we synthesized NC-HEXIM1-Tat (NHT) and HEXIM1-Tat-NC (HTN). NHT and HTN inhibited virus proliferation more effectively than HT, and they did not attenuate the function of HT. Notably, NHT and HTN inhibited the infectivity of the progeny virus, whereas HT had no such effect. NHT and HTN selectively and effectively interacted with vRNA and inhibited the proper packaging of the HIV-1 genome. Taken together, our results illustrated that the novel NC-fused chimeric proteins NHT and HTN display novel mechanisms of anti-HIV effects by inhibiting both HIV-1 transcription and packaging.
Collapse
Affiliation(s)
- Hae-In Kim
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea
| | - Ga-Na Kim
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea
| | - Kyung-Lee Yu
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea
| | - Seong-Hyun Park
- Graduate Program in Bio-industrial Engineering, College of Life Science and Biotechnology, The Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Ji Chang You
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea
- Correspondence:
| |
Collapse
|
2
|
Agyei D, Acquah C, Tan KX, Hii HK, Rajendran SRCK, Udenigwe CC, Danquah MK. Prospects in the use of aptamers for characterizing the structure and stability of bioactive proteins and peptides in food. Anal Bioanal Chem 2017; 410:297-306. [PMID: 28884330 DOI: 10.1007/s00216-017-0599-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/01/2017] [Accepted: 08/22/2017] [Indexed: 12/28/2022]
Abstract
Food-derived bioactive proteins and peptides have gained acceptance among researchers, food manufacturers and consumers as health-enhancing functional food components that also serve as natural alternatives for disease prevention and/or management. Bioactivity in food proteins and peptides is determined by their conformations and binding characteristics, which in turn depend on their primary and secondary structures. To maintain their bioactivities, the molecular integrity of bioactive peptides must remain intact, and this warrants the study of peptide form and structure, ideally with robust, highly specific and sensitive techniques. Short single-stranded nucleic acids (i.e. aptamers) are known to have high affinity for cognate targets such as proteins and peptides. Aptamers can be produced cost-effectively and chemically derivatized to increase their stability and shelf life. Their improved binding characteristics and minimal modification of the target molecular signature suggests their suitability for real-time detection of conformational changes in both proteins and peptides. This review discusses the developmental progress of systematic evolution of ligands by exponential enrichment (SELEX), an iterative technology for generating cost-effective aptamers with low dissociation constants (K d) for monitoring the form and structure of bioactive proteins and peptides. The review also presents case studies of this technique in monitoring the structural stability of bioactive peptide formulations to encourage applications in functional foods. The challenges and potential of aptamers in this research field are also discussed. Graphical abstract Advancing bioactive proteins and peptide functionality via aptameric ligands.
Collapse
Affiliation(s)
- Dominic Agyei
- Department of Food Science, University of Otago, Dunedin, 9054, New Zealand
| | - Caleb Acquah
- Curtin Sarawak Research Institute, Curtin University, 98009, Sarawak, Malaysia.,Department of Chemical Engineering, Curtin University, 98009, Sarawak, Malaysia
| | - Kei Xian Tan
- Curtin Sarawak Research Institute, Curtin University, 98009, Sarawak, Malaysia.,Department of Chemical Engineering, Curtin University, 98009, Sarawak, Malaysia
| | - Hieng Kok Hii
- Department of Chemical Engineering, Curtin University, 98009, Sarawak, Malaysia
| | - Subin R C K Rajendran
- Verschuren Centre for Sustainability in Energy and the Environment, Cape Breton University, Sydney, NS, B1P 6L2, Canada
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Michael K Danquah
- Curtin Sarawak Research Institute, Curtin University, 98009, Sarawak, Malaysia. .,Department of Chemical Engineering, Curtin University, 98009, Sarawak, Malaysia.
| |
Collapse
|
3
|
Goudreau N, Hucke O, Faucher AM, Grand-Maître C, Lepage O, Bonneau PR, Mason SW, Titolo S. Discovery and structural characterization of a new inhibitor series of HIV-1 nucleocapsid function: NMR solution structure determination of a ternary complex involving a 2:1 inhibitor/NC stoichiometry. J Mol Biol 2013; 425:1982-1998. [PMID: 23485336 DOI: 10.1016/j.jmb.2013.02.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/14/2013] [Accepted: 02/15/2013] [Indexed: 11/30/2022]
Abstract
The nucleocapsid (NC) protein is an essential factor with multiple functions within the human immunodeficiency virus type 1 (HIV-1) replication cycle. In this study, we describe the discovery of a novel series of inhibitors that targets HIV-1 NC protein by blocking its interaction with nucleic acids. This series was identified using a previously described capsid (CA) assembly assay, employing a recombinant HIV-1 CA-NC protein and immobilized TG-rich deoxyoligonucleotides. Using visible absorption spectroscopy, we were able to demonstrate that this new inhibitor series binds specifically and reversibly to the NC with a peculiar 2:1 stoichiometry. A fluorescence-polarization-based binding assay was also developed in order to monitor the inhibitory activities of this series of inhibitors. To better characterize the structural aspect of inhibitor binding onto NC, we performed NMR studies using unlabeled and (13)C,(15)N-double-labeled NC(1-55) protein constructs. This allowed the determination of the solution structure of a ternary complex characterized by two inhibitor molecules binding to the two zinc knuckles of the NC protein. To the best of our knowledge, this represents the first report of a high-resolution structure of a small-molecule inhibitor bound to NC, demonstrating sub-micromolar potency and moderate antiviral potency with one analogue of the series. This structure was compared with available NC/oligonucleotide complex structures and further underlined the high flexibility of the NC protein, allowing it to adopt many conformations in order to bind its different oligonucleotide/nucleomimetic targets. In addition, analysis of the interaction details between the inhibitor molecules and NC demonstrated how this novel inhibitor series is mimicking the guanosine nucleobases found in many reported complex structures.
Collapse
Affiliation(s)
- Nathalie Goudreau
- Department of Chemistry, Boehringer Ingelheim (Canada) Ltd., Research & Development, 2100 Cunard Street, Laval, QC, Canada H7S 2G5.
| | - Oliver Hucke
- Department of Chemistry, Boehringer Ingelheim (Canada) Ltd., Research & Development, 2100 Cunard Street, Laval, QC, Canada H7S 2G5.
| | - Anne-Marie Faucher
- Department of Chemistry, Boehringer Ingelheim (Canada) Ltd., Research & Development, 2100 Cunard Street, Laval, QC, Canada H7S 2G5
| | - Chantal Grand-Maître
- Department of Chemistry, Boehringer Ingelheim (Canada) Ltd., Research & Development, 2100 Cunard Street, Laval, QC, Canada H7S 2G5
| | - Olivier Lepage
- Department of Chemistry, Boehringer Ingelheim (Canada) Ltd., Research & Development, 2100 Cunard Street, Laval, QC, Canada H7S 2G5
| | - Pierre R Bonneau
- Department of Chemistry, Boehringer Ingelheim (Canada) Ltd., Research & Development, 2100 Cunard Street, Laval, QC, Canada H7S 2G5
| | - Stephen W Mason
- Department of Biological Sciences, Boehringer Ingelheim (Canada) Ltd., Research & Development, 2100 Cunard Street, Laval, QC, Canada H7S 2G5
| | - Steve Titolo
- Department of Biological Sciences, Boehringer Ingelheim (Canada) Ltd., Research & Development, 2100 Cunard Street, Laval, QC, Canada H7S 2G5
| |
Collapse
|
4
|
Mori M, Schult-Dietrich P, Szafarowicz B, Humbert N, Debaene F, Sanglier-Cianferani S, Dietrich U, Mély Y, Botta M. Use of virtual screening for discovering antiretroviral compounds interacting with the HIV-1 nucleocapsid protein. Virus Res 2012; 169:377-87. [PMID: 22634301 DOI: 10.1016/j.virusres.2012.05.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/14/2012] [Accepted: 05/16/2012] [Indexed: 12/16/2022]
Abstract
The HIV-1 nucleocapsid protein (NC) is considered as an emerging drug target for the therapy of AIDS. Several studies have highlighted the crucial role of NC within the viral replication cycle. However, although NC inhibition has provided in vitro and in vivo antiretroviral activity, drug-candidates which interfere with NC functions are still missing in the therapeutic arsenal against HIV. Based on previous studies, where the dynamic behavior of NC and its ligand binding properties have been investigated by means of computational methods, here we used a virtual screening protocol for discovering novel antiretroviral compounds which interact with NC. The antiretroviral activity of virtual hits was tested in vitro, whereas biophysical studies elucidated the direct interaction of most active compounds with NC(11-55), a peptide corresponding to the zinc finger domain of NC. Two novel antiretroviral small molecules capable of interacting with NC are presented here.
Collapse
Affiliation(s)
- Mattia Mori
- Università di Roma La Sapienza, Dipartimento di Chimica e Tecnologie del Farmaco, piazzale A. Moro 5, I-00185 Roma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Hamula CL, Zhang H, Li F, Wang Z, Chris Le X, Li XF. Selection and analytical applications of aptamers binding microbial pathogens. Trends Analyt Chem 2011; 30:1587-1597. [PMID: 32287535 PMCID: PMC7112775 DOI: 10.1016/j.trac.2011.08.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA aptamers specifically recognizing microbial cells and viruses have a range of analytical and therapeutic applications. This article describes recent advances in the development of aptamers targeting specific pathogens (e.g., live bacteria, whole viral particles, and virally-infected mammalian cells). Specific aptamers against pathogens have been used as affinity reagents to develop sandwich assays, to label and to image cells, to bind with cells for flow-cytometry analysis, and to act as probes for development of whole-cell biosensors. Future applications of aptamers to pathogens will benefit from recent advances in improved selection and new aptamers containing modified nucleotides, particularly slow off-rate modified aptamers (SOMAmers).
Collapse
Affiliation(s)
| | | | | | | | - X. Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, 10-102 Clinical Sciences Bldg., University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, 10-102 Clinical Sciences Bldg., University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| |
Collapse
|
6
|
Flexible nature and specific functions of the HIV-1 nucleocapsid protein. J Mol Biol 2011; 410:565-81. [PMID: 21762801 DOI: 10.1016/j.jmb.2011.03.037] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/14/2011] [Accepted: 03/17/2011] [Indexed: 01/04/2023]
Abstract
One salient feature of reverse transcription in retroviruses, notably in the human immunodeficiency virus type 1, is that it requires the homologous nucleocapsid (NC) protein acting as a chaperoning partner of the genomic RNA template and the reverse transcriptase, from the initiation to the completion of viral DNA synthesis. This short review on the NC protein of human immunodeficiency virus type 1 aims at briefly presenting the flexible nature of NC protein, how it interacts with nucleic acids via its invariant zinc fingers and flanking basic residues, and the possible mechanisms that account for its multiple functions in the early steps of virus replication, notably in the obligatory strand transfer reactions during viral DNA synthesis by the reverse transcriptase enzyme.
Collapse
|
7
|
Goldschmidt V, Miller Jenkins LM, de Rocquigny H, Darlix JL, Mély Y. The nucleocapsid protein of HIV-1 as a promising therapeutic target for antiviral drugs. ACTA ACUST UNITED AC 2010. [DOI: 10.2217/hiv.10.3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The nucleocapsid protein (NCp7) is a major HIV-1 structural protein that plays key roles in viral replication, mainly through its conserved zinc fingers that direct specific interactions with the viral nucleic acids. Owing to its high degree of conservation and critical functions, NCp7 represents a target of choice for drugs that can potentially complement HAART, thus possibly impairing the circulation of drug-resistant HIV-1 strains. Zinc ejectors showing potent antiretroviral activity were developed, but early generations suffered from limited selectively and significant toxicity. Compounds with improved selectivity have been developed and are being explored as topical microbicide candidates. Several classes of molecules inhibiting the interaction of NCp7 with the viral nucleic acids have also been developed. Although small molecules would be more suited for drug development, most molecules selected by screening showed limited antiretroviral activity. Peptides and RNA aptamers appear to be more promising, but the mechanism of their antiretroviral activity remains elusive. Substantial and more concerted efforts are needed to further develop anti-HIV drugs targeting NCp7 and bring them to the clinic.
Collapse
Affiliation(s)
- Valérie Goldschmidt
- Laboratoire de Biophotonique et Pharmacologie, UMR-CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Cedex, France
| | - Lisa M Miller Jenkins
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hugues de Rocquigny
- Laboratoire de Biophotonique et Pharmacologie, UMR-CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Cedex, France
| | - Jean-Luc Darlix
- LaboRetro, Unité de Virologie Humaine INSERM 758, Ecole Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon, France
| | - Yves Mély
- Laboratoire de Biophotonique et Pharmacologie, UMR-CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch-Cedex, France
| |
Collapse
|
8
|
Identification of in vivo interaction between Hepatitis C Virus core protein and 5' and 3' UTR RNA. Virus Res 2009; 145:285-92. [PMID: 19665505 DOI: 10.1016/j.virusres.2009.07.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 07/27/2009] [Accepted: 07/28/2009] [Indexed: 01/11/2023]
Abstract
Here, we investigated the ability of the Hepatitis C Virus (HCV) core protein to interact specifically with the 5' and 3' untranslated regions (UTRs) of HCV using an in vivo cell-based translation inhibition assay. HCV core protein interacts weakly but specifically with the SLIII stem loop in the 5' UTR in which the SLIIIb subdomain is the major determinant and the SL2 loop in the X region of the 3' UTR. These results revealed for the first time in vivo interaction of the core protein with 5' and 3' UTRs involved in the viral life cycle. This system provides a useful tool for further investigating interactions between the HCV core protein and 5' and 3' UTRs.
Collapse
|