1
|
Li X, Gao M, He Y, Xiong B, Liu H, Gu L. Intersectin-Cdc42 interaction is required for orderly meiosis in porcine oocytes. J Cell Physiol 2018; 234:7492-7497. [PMID: 30478952 DOI: 10.1002/jcp.27510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/10/2018] [Indexed: 11/10/2022]
Abstract
Intersectins (ITSNs) have been shown to act as adaptor proteins that govern multiple cellular events via regulating Cdc42 activity. However, it remains to be determined whether the ITSN-Cdc42 pathway is functional in porcine oocytes. To address this question, we used a small molecule, ZCL278, to selectively disrupt the ITSN2-Cdc42 interaction. In the present study, we find that porcine oocytes exposed to ZCL278 are unable to completely progress through meiosis. Meanwhile, the spindle defects and chromosomal congression failure are frequently detected in these oocytes. In support of this, we observed the accumulated distribution of vesicle-like ITSN2 signals around the chromosome/spindle region during porcine oocyte maturation. In addition, our results also showed that inhibition of the ITSN-Cdc42 interaction impairs the actin polymerization in porcine oocytes. In summary, the findings support a model where ITSNs, through the interaction with Cdc42, modulates the assembly of meiotic apparatus and actin polymerization, consequently ensuring the orderly meiotic progression during porcine oocyte maturation.
Collapse
Affiliation(s)
- Xiaoyan Li
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Min Gao
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Yongfu He
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Bo Xiong
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Honglin Liu
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| | - Ling Gu
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Jeganathan N, Predescu D, Zhang J, Sha F, Bardita C, Patel M, Wood S, Borgia JA, Balk RA, Predescu S. Rac1-mediated cytoskeleton rearrangements induced by intersectin-1s deficiency promotes lung cancer cell proliferation, migration and metastasis. Mol Cancer 2016; 15:59. [PMID: 27629044 PMCID: PMC5024437 DOI: 10.1186/s12943-016-0543-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 09/06/2016] [Indexed: 12/21/2022] Open
Abstract
Background The mechanisms involved in lung cancer (LC) progression are poorly understood making discovery of successful therapies difficult. Adaptor proteins play a crucial role in cancer as they link cell surface receptors to specific intracellular pathways. Intersectin-1s (ITSN-1s) is an important multidomain adaptor protein implicated in the pathophysiology of numerous pulmonary diseases. To date, the role of ITSN-1s in LC has not been studied. Methods Human LC cells, human LC tissue and A549 LC cells stable transfected with myc-ITSN-1s construct (A549 + ITSN-1s) were used in correlation with biochemical, molecular biology and morphological studies. In addition scratch assay with time lapse microscopy and in vivo xenograft tumor and mouse metastasis assays were performed. Results ITSN-1s, a prevalent protein of lung tissue, is significantly downregulated in human LC cells and LC tissue. Restoring ITSN-1s protein level decreases LC cell proliferation and clonogenic potential. In vivo studies indicate that immunodeficient mice injected with A549 + ITSN-1s cells develop less and smaller metastatic tumors compared to mice injected with A549 cells. Our studies also show that restoring ITSN-1s protein level increases the interaction between Cbl E3 ubiquitin ligase and Eps8 resulting in enhanced ubiquitination of the Eps8 oncoprotein. Subsequently, downstream unproductive assembly of the Eps8-mSos1 complex leads to impaired activation of the small GTPase Rac1. Impaired Rac1 activation mediated by ITSN-1s reorganizes the cytoskeleton (increased thick actin bundles and focal adhesion (FA) complexes as well as collapse of the vimentin filament network) in favor of decreased LC cell migration and metastasis. Conclusion ITSN-1s induced Eps8 ubiquitination and impaired Eps8-mSos1 complex formation, leading to impaired activation of Rac1, is a novel signaling mechanism crucial for abolishing the progression and metastatic potential of LC cells. Electronic supplementary material The online version of this article (doi:10.1186/s12943-016-0543-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Niranjan Jeganathan
- Division of Pulmonary and Critical Care Medicine, Rush University Medical Center and Rush Medical College, 1750 W. Harrison Street, 299 Jelke South Center, Chicago, IL, 60612, USA.
| | - Dan Predescu
- Department of Pharmacology and Division of Pulmonary and Critical Care Medicine, Rush University, 1750 W. Harrison Street, 1415 Jelke, Chicago, IL, 60612, USA
| | - Jin Zhang
- Department of Pharmacology, Rush University, 1750 W. Harrison Street, 1533 Jelke, Chicago, IL, 60612, USA
| | - Fei Sha
- Department of Pharmacology, Rush University, 1750 W. Harrison Street, 1533 Jelke, Chicago, IL, 60612, USA
| | - Cristina Bardita
- Department of Pharmacology, Rush University, 1750 W. Harrison Street, 1537 Jelke, Chicago, IL, 60612, USA
| | - Monal Patel
- Department of Pharmacology, Rush University, 1750 W. Harrison Street, 1533 Jelke, Chicago, IL, 60612, USA
| | - Stephen Wood
- Department of Immunology, Rush University, 1735 W. Harrison Street, 663 Cohn, Chicago, IL, 60612, USA
| | - Jeffrey A Borgia
- Department of Biochemistry, Rush University, 1750 W. Harrison Street, 1415 Jelke, Chicago, IL, 60612, USA
| | - Robert A Balk
- Division of Pulmonary and Critical Care Medicine, Rush University Medical Center and Rush Medical College, 1750 W. Harrison Street, 293 Jelke, Chicago, IL, 60612, USA
| | - Sanda Predescu
- Department of Pharmacology and Division of Pulmonary and Critical Care Medicine, Rush University Medical Center and Rush Medical College, 1750 W. Harrison Street, 1535 Jelke, Chicago, IL, 60612, USA
| |
Collapse
|
3
|
Akt attenuates apoptotic death through phosphorylation of H2A under hydrogen peroxide-induced oxidative stress in PC12 cells and hippocampal neurons. Sci Rep 2016; 6:21857. [PMID: 26899247 PMCID: PMC4761890 DOI: 10.1038/srep21857] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 02/02/2016] [Indexed: 01/24/2023] Open
Abstract
Although the essential role of protein kinase B (PKB)/Akt in cell survival signaling has been clearly established, the mechanism by which Akt mediates the cellular response to hydrogen peroxide (H2O2)-induced oxidative stress remains unclear. We demonstrated that Akt attenuated neuronal apoptosis through direct association with histone 2A (H2A) and phosphorylation of H2A at threonine 17. At early time points during H2O2 exposure of PC12 cells and primary hippocampal neurons, when the cells can tolerate the level of DNA damage, Akt was activated and phosphorylated H2A, leading to inhibition of apoptotic death. At later time points, Akt delivered the NAD+-dependent protein deacetylase Sirtuin 2 (Sirt 2) to the vicinity of phosphorylated H2A in response to irreversible DNA damage, thereby inducing H2A deacetylation and subsequently leading to apoptotic death. Ectopically expressed T17A-substituted H2A minimally interacted with Akt and failed to prevent apoptosis under oxidative stress. Thus Akt-mediated H2A phosphorylation has an anti-apoptotic function in conditions of H2O2-induced oxidative stress in neurons and PC12 cells.
Collapse
|
4
|
Yang X, Yan F, He Z, Liu S, Cheng Y, Wei K, Gan S, Yuan J, Wang S, Xiao Y, Ren K, Liu N, Hu X, Ding X, Hu X, Xiang S. ITSN2L Interacts with and Negatively Regulates RABEP1. Int J Mol Sci 2015; 16:28242-54. [PMID: 26633357 PMCID: PMC4691038 DOI: 10.3390/ijms161226091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 01/26/2023] Open
Abstract
Intersectin-2Long (ITSN2L) is a multi-domain protein participating in endocytosis and exocytosis. In this study, RABEP1 was identified as a novel ITSN2L interacting protein using a yeast two-hybrid screen from a human brain cDNA library and this interaction, specifically involving the ITSN2L CC domain and RABEP1 CC3 regions, was further confirmed by in vitro GST (glutathione-S-transferase) pull-down and in vivo co-immunoprecipitation assays. Corroboratively, we observed that these two proteins co-localize in the cytoplasm of mammalian cells. Furthermore, over-expression of ITSN2L promotes RABEP1 degradation and represses RABEP1-enhanced endosome aggregation, indicating that ITSN2L acts as a negative regulator of RABEP1. Finally, we showed that ITSN2L and RABEP1 play opposite roles in regulating endocytosis. Taken together, our results indicate that ITSN2L interacts with RABEP1 and stimulates its degradation in regulation of endocytosis.
Collapse
Affiliation(s)
- Xiaoxu Yang
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Feng Yan
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Zhicheng He
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Shan Liu
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Yeqing Cheng
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Ke Wei
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Shiquan Gan
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Jing Yuan
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Shang Wang
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Ye Xiao
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Kaiqun Ren
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Ning Liu
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Xiang Hu
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Xiaofeng Ding
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | - Xingwang Hu
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410081, China.
| | - Shuanglin Xiang
- Key Laboratory of Protein Chemistry and Developmental Biology of State Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
5
|
Lee DH, Ha JH, Kim Y, Jang M, Park SJ, Yoon HS, Kim EH, Bae KH, Park BC, Park SG, Yi GS, Chi SW. A conserved mechanism for binding of p53 DNA-binding domain and anti-apoptotic Bcl-2 family proteins. Mol Cells 2014; 37:264-9. [PMID: 24646834 PMCID: PMC3969048 DOI: 10.14348/molcells.2014.0001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 01/14/2014] [Indexed: 01/12/2023] Open
Abstract
The molecular interaction between tumor suppressor p53 and the anti-apoptotic Bcl-2 family proteins plays an essential role in the transcription-independent apoptotic pathway of p53. In this study, we investigated the binding of p53 DNA-binding domain (p53DBD) with the anti-apoptotic Bcl-2 family proteins, Bcl-w, Mcl-1, and Bcl-2, using GST pull-down assay and NMR spectroscopy. The GST pull-down assays and NMR experiments demonstrated the direct binding of the p53DBD with Bcl-w, Mcl-1, and Bcl-2. Further, NMR chemical shift perturbation data showed that Bcl-w and Mcl-1 bind to the positively charged DNA-binding surface of p53DBD. Noticeably, the refined structural models of the complexes between p53DBD and Bcl-w, Mcl-1, and Bcl-2 showed that the binding mode of p53DBD is highly conserved among the anti-apoptotic Bcl-2 family proteins. Furthermore, the chemical shift perturbations on Bcl-w, Mcl-1, and Bcl-2 induced by p53DBD binding occurred not only at the p53DBD-binding acidic region but also at the BH3 peptide-binding pocket, which suggests an allosteric conformational change similar to that observed in Bcl-XL. Taken altogether, our results revealed a structural basis for a conserved binding mechanism between p53DBD and the anti-apoptotic Bcl-2 family proteins, which shed light on to the molecular understanding of the transcription-independent apoptosis pathway of p53.
Collapse
Affiliation(s)
- Dong-Hwa Lee
- Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806,
Korea
| | - Ji-Hyang Ha
- Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806,
Korea
| | - Yul Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute for Science and Technology, Daejeon 305-701,
Korea
| | - Mi Jang
- Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806,
Korea
| | - Sung Jean Park
- College of Pharmacy, Gachon University, Incheon 406-799,
Korea
| | - Ho Sup Yoon
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore 637511,
Singapore
| | - Eun-Hee Kim
- Division of Magnetic Resonance, Korea Basic Science Institute, Cheongwon 363-883,
Korea
| | - Kwang-Hee Bae
- Research Center for Integrated Cellulomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806,
Korea
| | - Byoung Chul Park
- Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806,
Korea
| | - Sung Goo Park
- Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806,
Korea
| | - Gwan-Su Yi
- Department of Bio and Brain Engineering, Korea Advanced Institute for Science and Technology, Daejeon 305-701,
Korea
| | - Seung-Wook Chi
- Medical Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806,
Korea
| |
Collapse
|
6
|
Park HS, Hwang HJ, Kim GY, Cha HJ, Kim WJ, Kim ND, Yoo YH, Choi YH. Induction of apoptosis by fucoidan in human leukemia U937 cells through activation of p38 MAPK and modulation of Bcl-2 family. Mar Drugs 2013; 11:2347-64. [PMID: 23880928 PMCID: PMC3736427 DOI: 10.3390/md11072347] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 05/30/2013] [Accepted: 06/13/2013] [Indexed: 02/07/2023] Open
Abstract
The present study investigated possible mechanisms on the apoptosis induction of human leukemic cells by fucoidan, a sulfated polysaccharide found in marine algae. Fucoidan treatment of cells resulted in inhibition of growth and induction of apoptosis, as measured by 3-(4,5-dimetylthiazol-2-yl)-2,5-diphenyl-tetrazolium (MTT) assay, fluorescence microscopy, DNA fragmentation, and flow cytometry analysis. The increase in apoptosis was associated with the proteolytic activation of caspases, Bid cleavage, insertion of pro-apoptotic Bax into the mitochondria, release of cytochrome c from mitochondria to cytosol, and loss of mitochondria membrane potential (MMP) in U937 cells. However, apoptosis induced by fucoidan was attenuated by caspase inhibitors, indicating that fucoidan-induced apoptosis was dependent on the activation of caspases. Furthermore, fucoidan treatment effectively activated the p38 mitogen-activated protein kinase (MAPK) and p38 MAPK inhibitor, SB203580, and significantly reduced fucoidan-induced apoptosis through inhibition of Bax translocation and caspases activation, suggesting that the activation of p38 MAPK may play a key role in fucoidan-induced apoptosis. In addition, the authors found fucoidan-induced significantly attenuated in Bcl-2 overexpressing U937 cells, and pretreatment with fucoidan and HA 14-1, a small-molecule Bcl-2 inhibitor, markedly increased fucoidan-mediated apoptosis in Bcl-2 overexpressing U937 cells. Our findings imply that we may attribute some of the biological functions of p38 MAPK and Bcl-2 to their ability to inhibit fucoidan-induced apoptosis.
Collapse
Affiliation(s)
- Hyun Soo Park
- Department of Pharmacy, Pusan National University, Busan 609-735, Korea; E-Mails: (H.S.P.); (N.D.K.)
| | - Hye Jin Hwang
- Department of Food and Nutrition, Dongeui University, Busan 614-714, Korea; E-Mail:
- Anti-Aging Research Center & Blue-Bio Industry Regional Innovation Center, Dongeui University, Busan 614-714, Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Korea; E-Mail:
| | - Hee-Jae Cha
- Departments of Parasitology and Genetics, Kosin University College of Medicine, Busan 602-702, Korea; E-Mail:
| | - Wun-Jae Kim
- Department of Urology, Chungbuk National University College of Medicine, Cheongju 361-763, Korea; E-Mail:
| | - Nam Deuk Kim
- Department of Pharmacy, Pusan National University, Busan 609-735, Korea; E-Mails: (H.S.P.); (N.D.K.)
| | - Young Hyun Yoo
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 602-714, Korea
- Authors to whom correspondence should be addressed; E-Mails: (Y.H.Y.); (Y.H.C.); Tel.: +82-51-240-2637 (Y.H.Y.); +82-51-850-7413 (Y.H.C.); Fax: +82-51-243-0016 (Y.H.Y.); +82-51-853-4036 (Y.H.C.)
| | - Yung Hyun Choi
- Anti-Aging Research Center & Blue-Bio Industry Regional Innovation Center, Dongeui University, Busan 614-714, Korea
- Department of Biochemistry, Dongeui University College of Oriental Medicine, Busan 614-052, Korea
- Authors to whom correspondence should be addressed; E-Mails: (Y.H.Y.); (Y.H.C.); Tel.: +82-51-240-2637 (Y.H.Y.); +82-51-850-7413 (Y.H.C.); Fax: +82-51-243-0016 (Y.H.Y.); +82-51-853-4036 (Y.H.C.)
| |
Collapse
|
7
|
Emerging roles for intersectin (ITSN) in regulating signaling and disease pathways. Int J Mol Sci 2013; 14:7829-52. [PMID: 23574942 PMCID: PMC3645719 DOI: 10.3390/ijms14047829] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 01/10/2023] Open
Abstract
Intersectins (ITSNs) represent a family of multi-domain adaptor proteins that regulate endocytosis and cell signaling. ITSN genes are highly conserved and present in all metazoan genomes examined thus far. Lower eukaryotes have only one ITSN gene, whereas higher eukaryotes have two ITSN genes. ITSN was first identified as an endocytic scaffold protein, and numerous studies reveal a conserved role for ITSN in endocytosis. Subsequently, ITSNs were found to regulate multiple signaling pathways including receptor tyrosine kinases (RTKs), GTPases, and phosphatidylinositol 3-kinase Class 2beta (PI3KC2β). ITSN has also been implicated in diseases such as Down Syndrome (DS), Alzheimer Disease (AD), and other neurodegenerative disorders. This review summarizes the evolutionary conservation of ITSN, the latest research on the role of ITSN in endocytosis, the emerging roles of ITSN in regulating cell signaling pathways, and the involvement of ITSN in human diseases such as DS, AD, and cancer.
Collapse
|