1
|
Sheng Y, Meng G, Zhou Z, Du R, Wang Y, Jiang M. PARP-1 inhibitor alleviates liver lipid accumulation of atherosclerosis via modulating bile acid metabolism and gut microbes. Mol Omics 2023; 19:560-573. [PMID: 37249474 DOI: 10.1039/d3mo00033h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Background: The DNA damage repair enzyme, poly(ADP-ribose) polymerase 1 (PARP1), is crucial for lipid and glucose metabolism. However, no evidence has been presented on the relationship between liver lipid accumulation and the PARP1 inhibitor, 3-aminobenzamide (3-AB), in atherosclerosis. Methods: ApoE-/- mice were used to explore the effect of 3-AB on atherosclerotic liver lipid accumulation, and the experiment of Sprague Dawley (SD) rats was designed to determine if the lowering of liver lipid levels by 3-AB was linked to gut bacteria. The levels of bile acid metabolism-related targets were assessed by ELISA, western blotting, and RT-qPCR. The relative abundances of gut microbes and biomarkers were determined using 16S rRNA sequencing analysis. Bile acid levels in the liver and ileum were examined by ultra-performance liquid chromatography-tandem mass spectrometry. The relationship between gut microbes and bile acids was assessed by Spearman's correlation analysis. Results: 3-AB significantly reduced the formation of aortic plaques in apoE-/- mice, according to gross oil red staining. H & E and Oil Red O staining revealed that 3-AB significantly reduced the hepatic lipid droplet area in ApoE-/- mice and SD rats. Compared with the atherosclerosis (ATH) group, 3-AB dramatically decreased the levels of total cholesterol (TC), triglyceride (TG), and low-density lipoprotein-cholesterol (LDL-C) in the serum of SD rats and apoE-/- mice, and the levels of TC, TG, and LDL-C in the serum and liver of apoE-/- mice. Furthermore, in apoE-/- mice and SD rats, 3-AB increased the mRNA and protein levels of farnesoid X receptor (FXR) and bile salt export pump (BSEP) in the liver, while inhibiting the mRNA and protein levels of FXR and fibroblast growth factor 15 (FGF15) in the ileum, respectively. 3-AB clearly inhibited the mRNA and protein levels of PARP1 in the liver and ileum of apoE-/- mice and rats. Following treatment with 3-AB, the levels of conjugated bile acids decreased in the liver of apoE-/- mice and increased in the ileum of SD rats, according to targeted metabolomic analysis. Microbiome sequencing analysis revealed that 3-AB reduced the relative abundance of Lactobacillus, Bifidobacterium, Listeria, Clostridium, Bacillus, and Staphylococcus in the feces of apoE-/- mice, and the relative abundance of Blautia, Clostridium, and Listeria in the feces of SD rats, eventually decreasing the total abundance of 10 bile salt hydrolase-associated gut microbes. According to the correlation analysis, 3-AB regulates bile acid metabolism, which is primarily related to Bifidobacterium. Conclusion: 3-AB alleviated atherosclerosis by modulating the bile acid metabolism and bile salt hydrolase-related gut microbes.
Collapse
Affiliation(s)
- Yingkun Sheng
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China.
| | - Guibing Meng
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China.
| | - Zhirong Zhou
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China.
| | - Ruijiao Du
- Department of Pharmacy, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuefei Wang
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Miaomiao Jiang
- State Key Laboratory of Component-based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
2
|
PARPs in lipid metabolism and related diseases. Prog Lipid Res 2021; 84:101117. [PMID: 34450194 DOI: 10.1016/j.plipres.2021.101117] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022]
Abstract
PARPs and tankyrases (TNKS) represent a family of 17 proteins. PARPs and tankyrases were originally identified as DNA repair factors, nevertheless, recent advances have shed light on their role in lipid metabolism. To date, PARP1, PARP2, PARP3, tankyrases, PARP9, PARP10, PARP14 were reported to have multi-pronged connections to lipid metabolism. The activity of PARP enzymes is fine-tuned by a set of cholesterol-based compounds as oxidized cholesterol derivatives, steroid hormones or bile acids. In turn, PARPs modulate several key processes of lipid homeostasis (lipotoxicity, fatty acid and steroid biosynthesis, lipoprotein homeostasis, fatty acid oxidation, etc.). PARPs are also cofactors of lipid-responsive nuclear receptors and transcription factors through which PARPs regulate lipid metabolism and lipid homeostasis. PARP activation often represents a disruptive signal to (lipid) metabolism, and PARP-dependent changes to lipid metabolism have pathophysiological role in the development of hyperlipidemia, obesity, alcoholic and non-alcoholic fatty liver disease, type II diabetes and its complications, atherosclerosis, cardiovascular aging and skin pathologies, just to name a few. In this synopsis we will review the evidence supporting the beneficial effects of pharmacological PARP inhibitors in these diseases/pathologies and propose repurposing PARP inhibitors already available for the treatment of various malignancies.
Collapse
|
3
|
Xin C, Chao Z, Xian W, Zhonggao W, Tao L. The phosphorylation of CHK1 at Ser345 regulates the phenotypic switching of vascular smooth muscle cells both in vitro and in vivo. Atherosclerosis 2020; 313:50-59. [PMID: 33027721 DOI: 10.1016/j.atherosclerosis.2020.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/15/2020] [Accepted: 09/16/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND AIMS DNA damage and repair have been shown to be associated with carotid artery restenosis and atherosclerosis. The proliferation and migration of vascular smooth muscle cells (VSMCs) is the main cause of artery stenosis. This study aims to define the relationship between DNA damage and VSMCs proliferation. METHODS A rat carotid artery injury model was established, and human and rat VSMCs cultured in vitro. H2O2 was used to induce DNA damage in vitro. The selected CHK1 inhibitor, LY2603618, was used to inhibit CHK1 phosphorylation both in vivo and in vitro. γH2AX, αSMA and phosphorylated CHK1 were detected both in rat carotid artery and cultured VSMCs from different groups. Hyperplasia ratio of rat carotid artery intimal was measured. RESULTS DNA double-strand breaks occur in the rat carotid artery after injury. DNA damage induces CHK1 phosphorylation and down-regulates αSMA expression in VSMCs both in vitro and in vivo. The inhibition of CHK1 phosphorylation rescues αSMA expression in VSMCs both in vitro and in vivo, and rat carotid intimal hyperplasia after injury was suppressed. CONCLUSIONS Our data demonstrated that phosphorylation of CHK1 under DNA damage stress modulates VSMCs phenotypic switching. CHK1 inhibition may be a potential therapeutic strategy for intima hyperplasia treatment.
Collapse
Affiliation(s)
- Chen Xin
- General Department of Xuan Wu Hospital Capital Medical University, Beijing, 100053, China; Vascular Surgery Department of Xuan Wu Hospital Capital Medical University, Institute of Vascular Sutgery, Capital Medical University, Beijing, 100053, China
| | - Zhang Chao
- Vascular Surgery Department of Xuan Wu Hospital Capital Medical University, Institute of Vascular Sutgery, Capital Medical University, Beijing, 100053, China
| | - Wang Xian
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Wang Zhonggao
- General Department of Xuan Wu Hospital Capital Medical University, Beijing, 100053, China.
| | - Luo Tao
- Vascular Surgery Department of Xuan Wu Hospital Capital Medical University, Institute of Vascular Sutgery, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
4
|
Dai W, Fu Y, Deng Y, Zeng Z, Gu P, Liu H, Liu J, Xu X, Wu D, Luo X, Yang L, Zhang J, Lin K, Hu G, Huang H. Regulation of Wnt Singaling Pathway by Poly (ADP-Ribose) Glycohydrolase (PARG) Silencing Suppresses Lung Cancer in Mice Induced by Benzo(a)pyrene Inhalation Exposure. Front Pharmacol 2019; 10:338. [PMID: 31130856 PMCID: PMC6509174 DOI: 10.3389/fphar.2019.00338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/19/2019] [Indexed: 01/03/2023] Open
Abstract
Benzo(a)pyrene (BaP) is a polycyclic aromatic hydrocarbon that specifically causes cancer and is widely distributed in the environment. Poly (ADP-ribosylation), as a key post-translational modification in BaP-induced carcinogenesis, is mainly catalyzed by poly (ADP-ribose) glycohydrolase (PARG) in eukaryotic organisms. Previously, it is found that PARG silencing can counteract BaP-induced carcinogenesis in vitro, but the mechanism remained unclear. In this study, we further examined this process in vivo by using heterozygous PARG knockout mice (PARG+/−). Wild-type and PARG+/− mice were individually treated with 0 or 10 μg/m3 BaP for 90 or 180 days by dynamic inhalation exposure. Pathological analysis of lung tissues showed that, with extended exposure time, carcinogenesis and injury in the lungs of WT mice was progressively worse; however, the injury was minimal and carcinogenesis was not detected in the lungs of PARG+/− mice. These results indicate that PARG gene silencing protects mice against lung cancer induced by BaP inhalation exposure. Furthermore, as the exposure time was extended, the protein phosphorylation level was down-regulated in WT mice, but up-regulated in PARG+/− mice. The relative expression of Wnt2b and Wnt5b mRNA in WT mice were significantly higher than those in the control group, but there was no significant difference in PARG+/− mice. Meanwhile, the relative expression of Wnt2b and Wnt5b proteins, as assessed by immunohistochemistry and Western blot analysis, was significantly up-regulated by BaP in WT mice; while in PARG+/− mice it was not statistically affected. Our work provides initial evidence that PARG silencing suppresses BaP induced lung cancer and stabilizes the expression of Wnt ligands, PARG gene and Wnt ligands may provide new options for the diagnosis and treatment of lung cancer.
Collapse
Affiliation(s)
- Wenjuan Dai
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China.,Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
| | - Yingbin Fu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yanxia Deng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Zhuoying Zeng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Pan Gu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Hailong Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jianjun Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xinyun Xu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Desheng Wu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xianru Luo
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Linqing Yang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jinzhou Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Kai Lin
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Gonghua Hu
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China.,Department of Preventive Medicine, Gannan Medical University, Ganzhou, China
| | - Haiyan Huang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| |
Collapse
|
5
|
Wang J, Li J, Liu J, Xu M, Tong X, Wang J. Chlorogenic acid prevents isoproterenol-induced DNA damage in vascular smooth muscle cells. Mol Med Rep 2016; 14:4063-4068. [PMID: 27634104 PMCID: PMC5101879 DOI: 10.3892/mmr.2016.5743] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 06/30/2016] [Indexed: 11/17/2022] Open
Abstract
Numerous clinical therapeutic agents have been identified as DNA damaging. The present study revealed that isoproterenol (Iso) resulted in DNA damage in vascular smooth muscle cells (VSMCs) and increased the levels of intracellular oxygen free radicals. Administration of chlorogenic acid (CGA) inhibited this effect. Pretreatment with CGA abrogated the increase in protein expression levels of γ-H2A histone family member X, phosphorylated ataxia telangiectasia mutated, phosphorylated Rad3-related protein, breast cancer 1 and C-terminal Src homologous kinase induced by Iso. In addition, the increase in levels of intracellular reactive oxygen species (ROS) induced by Iso was inhibited by CGA pretreatment in a dose-dependent manner. The results of the present study suggest that CGA may inhibit Iso-induced VSMC damage via the suppression of ROS generation. Therefore, CGA may be a novel agent for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Jingshuai Wang
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Shanghai 201204, P.R. China
| | - Jiyang Li
- Department of General Medicine, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200000, P.R. China
| | - Jie Liu
- Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Mengjiao Xu
- Department of Obstetrics and Gynecology, Tongji Hospital of Tongji University, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Xiaowen Tong
- Department of Obstetrics and Gynecology, Tongji Hospital of Tongji University, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Jianjun Wang
- Department of Obstetrics and Gynecology, Tongji Hospital of Tongji University, Tongji University School of Medicine, Shanghai 200065, P.R. China
| |
Collapse
|
6
|
Zhang MJ, Zhou Y, Chen L, Wang X, Long CY, Pi Y, Gao CY, Li JC, Zhang LL. SIRT1 improves VSMC functions in atherosclerosis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 121:11-5. [PMID: 27080738 DOI: 10.1016/j.pbiomolbio.2016.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/17/2016] [Indexed: 12/19/2022]
Abstract
Despite advancements in diagnosis and treatment of cardiovascular diseases (CVDs), the morbidity and mortality of CVDs are still rising. Atherosclerosis is a chronic inflammatory disease contributing to multiple CVDs. Considering the complexity and severity of atherosclerosis, it is apparent that exploring the mechanisms of atherosclerotic formation and seeking new therapies for patients with atherosclerosis are required to overcome the heavy burden of CVDs on the quality and length of life of the global population. Vascular smooth muscle cells (VSMCs) play a dominant role in functional and structural changes of the arterial walls in response to atherogenic factors. Therefore, improvement of VSMC functions will slow down the development of atherosclerosis to a large extent. Given its protective performances on regulation of cholesterol metabolism and inflammatory responses, SIRT1 has long been known as an anti-atherosclerosis factor. In this review, we focus on the effects of SIRT1 on VSMC functions and thereby the development of atherosclerosis.
Collapse
Affiliation(s)
- Ming-Jie Zhang
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China
| | - Yi Zhou
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China
| | - Lei Chen
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China
| | - Xu Wang
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China
| | - Chun-Yan Long
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China
| | - Yan Pi
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China
| | - Chang-Yue Gao
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China
| | - Jing-Cheng Li
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China
| | - Li-Li Zhang
- Department of Neurology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, PR China.
| |
Collapse
|
7
|
Li X, Li X, Zhu Z, Huang P, Zhuang Z, Liu J, Gao W, Liu Y, Huang H. Poly(ADP-Ribose) Glycohydrolase (PARG) Silencing Suppresses Benzo(a)pyrene Induced Cell Transformation. PLoS One 2016; 11:e0151172. [PMID: 27003318 PMCID: PMC4803271 DOI: 10.1371/journal.pone.0151172] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 02/24/2016] [Indexed: 12/31/2022] Open
Abstract
Benzo(a)pyrene (BaP) is a ubiquitously distributed environmental pollutant and known carcinogen, which can induce malignant transformation in rodent and human cells. Poly(ADP-ribose) glycohydrolase (PARG), the primary enzyme that catalyzes the degradation of poly(ADP-ribose) (PAR), has been known to play an important role in regulating DNA damage repair and maintaining genomic stability. Although PARG has been shown to be a downstream effector of BaP, the role of PARG in BaP induced carcinogenesis remains unclear. In this study, we used the PARG-deficient human bronchial epithelial cell line (shPARG) as a model to examine how PARG contributed to the carcinogenesis induced by chronic BaP exposure under various concentrations (0, 10, 20 and 40 μM). Our results showed that PARG silencing dramatically reduced DNA damages, chromosome abnormalities, and micronuclei formations in the PARG-deficient human bronchial epithelial cells compared to the control cells (16HBE cells). Meanwhile, the wound healing assay showed that PARG silencing significantly inhibited BaP-induced cell migration. Furthermore, silencing of PARG significantly reduced the volume and weight of tumors in Balb/c nude mice injected with BaP induced transformed human bronchial epithelial cells. This was the first study that reported evidences to support an oncogenic role of PARG in BaP induced carcinogenesis, which provided a new perspective for our understanding in BaP exposure induced cancer.
Collapse
Affiliation(s)
- Xuan Li
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Guangdong, China
| | - Xiyi Li
- School of Public Health, Guangxi Medical University, Guangxi, China
| | - Zhiliang Zhu
- Department of Occupational Disease Prevention, Baoan Center for Disease Control and Prevention, Guangdong, China
| | - Peiwu Huang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Guangdong, China
| | - Zhixiong Zhuang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Guangdong, China
| | - Jianjun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Guangdong, China
| | - Wei Gao
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Guangdong, China
| | - Yinpin Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Guangdong, China
| | - Haiyan Huang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Guangdong, China
- * E-mail:
| |
Collapse
|
8
|
Synergetic Effects of PARP Inhibitor AZD2281 and Cisplatin in Oral Squamous Cell Carcinoma in Vitro and in Vivo. Int J Mol Sci 2016; 17:272. [PMID: 26927065 PMCID: PMC4813136 DOI: 10.3390/ijms17030272] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/08/2016] [Accepted: 02/17/2016] [Indexed: 01/03/2023] Open
Abstract
Cisplatin is a commonly used chemotherapeutic drug for treatment of oral carcinoma, and combinatorial effects are expected to exert greater therapeutic efficacy compared with monotherapy. Poly(ADP-ribosyl)ation is reported to be involved in a variety of cellular processes, such as DNA repair, cell death, telomere regulation, and genomic stability. Based on these properties, poly(ADP-ribose) polymerase (PARP) inhibitors are used for treatment of cancers, such as BRCA1/2 mutated breast and ovarian cancers, or certain solid cancers in combination with anti-cancer drugs. However, the effects on oral cancer have not been fully evaluated. In this study, we examined the effects of PARP inhibitor on the survival of human oral cancer cells in vitro and xenografted tumors derived from human oral cancer cells in vivo. In vitro effects were assessed by microculture tetrazolium and survival assays. The PARP inhibitor AZD2281 (olaparib) showed synergetic effects with cisplatin in a dose-dependent manner. Combinatorial treatment with cisplatin and AZD2281 significantly inhibited xenografted tumor growth compared with single treatment of cisplatin or AZD2281. Histopathological analysis revealed that cisplatin and AZD2281 increased TUNEL-positive cells and decreased Ki67- and CD31-positive cells. These results suggest that PARP inhibitors have the potential to improve therapeutic strategies for oral cancer.
Collapse
|