1
|
Rustagi Y, Abouhashem AS, Verma P, Verma SS, Hernandez E, Liu S, Kumar M, Guda PR, Srivastava R, Mohanty SK, Kacar S, Mahajan S, Wanczyk KE, Khanna S, Murphy MP, Gordillo GM, Roy S, Wan J, Sen CK, Singh K. Endothelial Phospholipase Cγ2 Improves Outcomes of Diabetic Ischemic Limb Rescue Following VEGF Therapy. Diabetes 2022; 71:1149-1165. [PMID: 35192691 PMCID: PMC9044136 DOI: 10.2337/db21-0830] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022]
Abstract
Therapeutic vascular endothelial growth factor (VEGF) replenishment has met with limited success for the management of critical limb-threatening ischemia. To improve outcomes of VEGF therapy, we applied single-cell RNA sequencing (scRNA-seq) technology to study the endothelial cells of the human diabetic skin. Single-cell suspensions were generated from the human skin followed by cDNA preparation using the Chromium Next GEM Single-cell 3' Kit v3.1. Using appropriate quality control measures, 36,487 cells were chosen for downstream analysis. scRNA-seq studies identified that although VEGF signaling was not significantly altered in diabetic versus nondiabetic skin, phospholipase Cγ2 (PLCγ2) was downregulated. The significance of PLCγ2 in VEGF-mediated increase in endothelial cell metabolism and function was assessed in cultured human microvascular endothelial cells. In these cells, VEGF enhanced mitochondrial function, as indicated by elevation in oxygen consumption rate and extracellular acidification rate. The VEGF-dependent increase in cell metabolism was blunted in response to PLCγ2 inhibition. Follow-up rescue studies therefore focused on understanding the significance of VEGF therapy in presence or absence of endothelial PLCγ2 in type 1 (streptozotocin-injected) and type 2 (db/db) diabetic ischemic tissue. Nonviral topical tissue nanotransfection technology (TNT) delivery of CDH5 promoter-driven PLCγ2 open reading frame promoted the rescue of hindlimb ischemia in diabetic mice. Improvement of blood flow was also associated with higher abundance of VWF+/CD31+ and VWF+/SMA+ immunohistochemical staining. TNT-based gene delivery was not associated with tissue edema, a commonly noted complication associated with proangiogenic gene therapies. Taken together, our study demonstrates that TNT-mediated delivery of endothelial PLCγ2, as part of combination gene therapy, is effective in diabetic ischemic limb rescue.
Collapse
Affiliation(s)
- Yashika Rustagi
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Ahmed S. Abouhashem
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
- Sharkia Clinical Research Department, Ministry of Health and Population, Cairo, Egypt
| | - Priyanka Verma
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Sumit S. Verma
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Edward Hernandez
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Sheng Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN
| | - Manishekhar Kumar
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Poornachander R. Guda
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Rajneesh Srivastava
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Sujit K. Mohanty
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Sedat Kacar
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Sanskruti Mahajan
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Kristen E. Wanczyk
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Savita Khanna
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Michael P. Murphy
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Gayle M. Gordillo
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Sashwati Roy
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Jun Wan
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN
| | - Chandan K. Sen
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| | - Kanhaiya Singh
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
2
|
Li J, Liu L, Cheng Y, Xie Q, Wu M, Chen X, Li Z, Chen H, Peng J, Shen A. Swimming attenuates tumor growth in CT-26 tumor-bearing mice and suppresses angiogenesis by mediating the HIF-1α/VEGFA pathway. Open Life Sci 2022; 17:121-130. [PMID: 35291563 PMCID: PMC8886589 DOI: 10.1515/biol-2022-0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/29/2021] [Accepted: 11/12/2021] [Indexed: 12/24/2022] Open
Abstract
Low physical activity correlates with increased cancer risk in various cancer types, including colorectal cancer (CRC). However, the ways in which swimming can benefit CRC remain largely unknown. In this study, mice bearing tumors derived from CT-26 cells were randomly divided into the control and swimming groups. Mice in the swimming group were subjected to physical training (swimming) for 3 weeks. Compared with the control group, swimming clearly attenuated tumor volume and tumor weight in CT-26 tumor-bearing mice. RNA sequencing (RNA-seq) identified 715 upregulated and 629 downregulated transcripts (including VEGFA) in tumor tissues of mice in the swimming group. KEGG pathway analysis based on differentially expressed transcripts identified multiple enriched signaling pathways, including angiogenesis, hypoxia, and vascular endothelial growth factor (VEGF) pathways. Consistently, IHC analysis revealed that swimming significantly downregulated CD31, HIF-1α, VEGFA, and VEGFR2 protein expression in tumor tissues. In conclusion, swimming significantly attenuates tumor growth in CT-26 tumor-bearing mice by inhibiting tumor angiogenesis via the suppression of the HIF-1α/VEGFA pathway.
Collapse
Affiliation(s)
- Jiapeng Li
- Department of Physical Education, Fujian University of Traditional Chinese Medicine, Fuzhou , Fujian 350122 , China
| | - Liya Liu
- Academy of Integrative Medicine and Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine , 1 Qiuyang, Minhou Shangjie, Fuzhou , Fujian 350122 , China
| | - Ying Cheng
- Academy of Integrative Medicine and Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine , 1 Qiuyang, Minhou Shangjie, Fuzhou , Fujian 350122 , China
| | - Qiurong Xie
- Academy of Integrative Medicine and Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine , 1 Qiuyang, Minhou Shangjie, Fuzhou , Fujian 350122 , China
| | - Meizhu Wu
- Academy of Integrative Medicine and Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine , 1 Qiuyang, Minhou Shangjie, Fuzhou , Fujian 350122 , China
| | - Xiaoping Chen
- Academy of Integrative Medicine and Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine , 1 Qiuyang, Minhou Shangjie, Fuzhou , Fujian 350122 , China
| | - Zuanfang Li
- Academy of Integrative Medicine and Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine , 1 Qiuyang, Minhou Shangjie, Fuzhou , Fujian 350122 , China
| | - Haichun Chen
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou , Fujian 350007 , China
| | - Jun Peng
- Academy of Integrative Medicine and Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine , 1 Qiuyang, Minhou Shangjie, Fuzhou , Fujian 350122 , China
| | - Aling Shen
- Academy of Integrative Medicine and Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine , 1 Qiuyang, Minhou Shangjie, Fuzhou , Fujian 350122 , China
| |
Collapse
|
3
|
Lee H, Jung TY, Lim SH, Choi EJ, Lee J, Min DS. Phospholipase D2 is a positive regulator of sirtuin 1 and modulates p53-mediated apoptosis via sirtuin 1. Exp Mol Med 2021; 53:1287-1297. [PMID: 34471223 PMCID: PMC8492672 DOI: 10.1038/s12276-021-00659-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 06/06/2021] [Indexed: 11/24/2022] Open
Abstract
Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide-dependent histone deacetylase that plays diverse physiological roles. However, little is known about the regulation of SIRT1 activity. Here, we show that phospholipase D2 (PLD2), but not PLD1, selectively interacts with SIRT1 and increases the deacetylase activity of SIRT1. PLD2 does not interact with the other isozymes of SIRT (SIRT2–7). Two leucine residues in the LXXLL motif (L173 and L174) in the phox domain of PLD2 interact with the region essential for SIRT1 activity. PLD2 stimulates the SIRT1-mediated deacetylation of p53 independent of its lipase activity. In our study, mutagenesis of the LXXLL motif suppressed the interaction of PLD2 with SIRT1 and inhibited SIRT1-mediated p53 deacetylation and p53-induced transactivation of proapoptotic genes. Ultimately, overexpression of wild-type PLD2 but not that of LXXLL-mutant PLD2 protected cells against etoposide-induced apoptosis. Moreover, PLD2 did not protect against apoptosis induced by SIRT1 depletion under genotoxic stress. Collectively, our results suggest that PLD2 is a positive regulator of SIRT1 and modulates p53-mediated apoptosis via SIRT1. New details about the regulatory mechanisms that prevent tumor cell death could be exploited to increase the effectiveness of chemotherapy. The sirtuin (SIRT) protein family has been linked to both promotion and suppression of tumors in different cancers. The enzyme SIRT1 in particular deacetylates, and thereby deactivates, the key tumor-suppressing antigen p53, stopping p53 from inducing apoptosis (controlled cell death) in tumors. Do Sik Min at Yonsei University, Incheon, South Korea, and co-workers revealed that this SIRT1 deacetylation of p53 is greatly enhanced by the activity of the enzyme phospholipase D2 (PLD2). A particular region on PLD2 is required to activate SIRT1, this activation leading to protection of tumor cells from apoptosis induced by the chemotherapy drug etoposide. Therapies that target that region on PLD2 might therefore suppress a tumor’s natural resistance to chemotherapy.
Collapse
Affiliation(s)
- Hyesung Lee
- College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - Taek-Yeol Jung
- Department of Life Science, College of Natural Science, Ewha Womans University, Seoul, 03760, South Korea
| | - Seong Hun Lim
- College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - Eun Ju Choi
- College of Pharmacy, Yonsei University, Incheon, 21983, South Korea.,Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, South Korea
| | - Jinu Lee
- College of Pharmacy, Yonsei University, Incheon, 21983, South Korea.,Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, South Korea
| | - Do Sik Min
- College of Pharmacy, Yonsei University, Incheon, 21983, South Korea.
| |
Collapse
|
4
|
McDermott MI, Wang Y, Wakelam MJO, Bankaitis VA. Mammalian phospholipase D: Function, and therapeutics. Prog Lipid Res 2019; 78:101018. [PMID: 31830503 DOI: 10.1016/j.plipres.2019.101018] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 01/23/2023]
Abstract
Despite being discovered over 60 years ago, the precise role of phospholipase D (PLD) is still being elucidated. PLD enzymes catalyze the hydrolysis of the phosphodiester bond of glycerophospholipids producing phosphatidic acid and the free headgroup. PLD family members are found in organisms ranging from viruses, and bacteria to plants, and mammals. They display a range of substrate specificities, are regulated by a diverse range of molecules, and have been implicated in a broad range of cellular processes including receptor signaling, cytoskeletal regulation and membrane trafficking. Recent technological advances including: the development of PLD knockout mice, isoform-specific antibodies, and specific inhibitors are finally permitting a thorough analysis of the in vivo role of mammalian PLDs. These studies are facilitating increased recognition of PLD's role in disease states including cancers and Alzheimer's disease, offering potential as a target for therapeutic intervention.
Collapse
Affiliation(s)
- M I McDermott
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America.
| | - Y Wang
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, United States of America
| | - M J O Wakelam
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - V A Bankaitis
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, United States of America; Department of Chemistry, Texas A&M University, College Station, Texas 77840, United States of America
| |
Collapse
|
5
|
Kwon O, Seo Y, Park H. Pinosylvin exacerbates LPS-induced apoptosis via ALOX 15 upregulation in leukocytes. BMB Rep 2018; 51:302-307. [PMID: 29555013 PMCID: PMC6033067 DOI: 10.5483/bmbrep.2018.51.6.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Indexed: 12/31/2022] Open
Abstract
Pinosylvin is known to have anti-inflammatory activity in endothelial cells. In this study, we found that pinosylvin had a pro-apoptotic activity in lipopolysaccharide (LPS)-preconditioned leukocytes. This finding suggests that pinosylvin has an effect on the resolution of inflammation. To understand the detailed mechanism, we examined if pinosylvin enhances cyclooxygenase (COX) or lipoxygenase (LOX) activity in THP-1 and U937 cells. LOX activity was found to be markedly increased by pinosylvin, whereas COX activity was not altered. Furthermore, we found that pinosylvin enhanced both levels of ALOX 15 mRNA and protein, implying that LOX activity, elevated by pinosylvin, is attributed to upregulation of ALOX 15 expression. From this cell signaling study, pinosylvin appeared to promote phosphorylations of ERK and JNK. ERK or JNK inhibitors were found to attenuate ALOX 15 expression and LPS-induced apoptosis promoted by pinosylvin. In conclusion, pinosylvin enhances the apoptosis of LPS-preconditioned leukocytes by up-regulating ALOX 15 expression through ERK and JNK. These findings suggest that pinosylvin may induce the resolution of inflammation.
Collapse
Affiliation(s)
- Ohseong Kwon
- Department of Molecular Biology & Institute of Nanosensor and Biotechnology, Dankook University, Cheonan 31116, Korea
| | - Youngsik Seo
- Department of Molecular Biology & Institute of Nanosensor and Biotechnology, Dankook University, Cheonan 31116, Korea
| | - Heonyong Park
- Department of Molecular Biology & Institute of Nanosensor and Biotechnology, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
6
|
Paek AR, Mun JY, Hong KM, Lee J, Hong DW, You HJ. Zinc finger protein 143 expression is closely related to tumor malignancy via regulating cell motility in breast cancer. BMB Rep 2018; 50:621-627. [PMID: 29065970 PMCID: PMC5749908 DOI: 10.5483/bmbrep.2017.50.12.177] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
We previously reported the involvement of zinc-finger protein 143 (ZNF143) on cancer cell motility in colon cancer cells. Here, ZNF143 was further characterized in breast cancer. Immunohistochemistry was used to determine the expression of ZNF143 in normal tissues and in tissues from metastatic breast cancer at various stages. Notably, ZNF143 was selectively expressed in duct and gland epithelium of normal breast tissues, which decreased when the tissue became malignant. To determine the molecular mechanism how ZNF143 affects breast cancer progression, it was knocked down by infecting benign breast cancer cells with short-hairpin (sh) RNA-lentiviral particles against ZNF143 (MCF7 sh-ZNF143). MCF7 sh-ZNF143 cells showed different cell-cell contacts and actin filament (F-actin) structures when compared with MCF7 sh-Control cells. In migration and invasion assays, ZNF143 knockdown induced increased cellular motility in breast carcinoma cells. This was reduced by the recovery of ZNF143 expression. Taken together, these results suggest that ZNF143 expression contributes to breast cancer progression.
Collapse
Affiliation(s)
- A Rome Paek
- Translational Research Branch, Division of Translational Science, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Ji Young Mun
- Department of Biomedical Laboratory Science (Seongnam campus) Eulji University, Seongnam 13135, Korea; BK21 Plus Program, Department of Senior Healthcare, Graduate School, Eulji University, Daejeon 34824, Korea
| | - Kyeong-Man Hong
- Omics Core Laboratory, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Jongkeun Lee
- Clinical Genomics Analysis Branch, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Dong Wan Hong
- Clinical Genomics Analysis Branch, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Hye Jin You
- Translational Research Branch, Division of Translational Science, Research Institute, National Cancer Center, Goyang 10408, Korea; Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Korea
| |
Collapse
|
7
|
Roth E, Frohman MA. Proliferative and metastatic roles for Phospholipase D in mouse models of cancer. Adv Biol Regul 2017; 67:134-140. [PMID: 29154090 DOI: 10.1016/j.jbior.2017.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 11/11/2017] [Accepted: 11/12/2017] [Indexed: 02/06/2023]
Abstract
Phospholipase D (PLD) activity has been proposed to facilitate multiple steps in cancer progression including growth, metabolism, angiogenesis, and mobility. The canonical enzymes PLD1 and PLD2 enact their diverse effects through hydrolyzing the membrane lipid phosphatidylcholine to generate the second messenger and signaling lipid phosphatidic acid (PA). However, the widespread expression of PLD1 and PLD2 in normal tissues and the additional distinct enzymatic mechanisms through which PA can be generated have produced uncertainty regarding the optimal settings in which PLD inhibition might ameliorate cancer. Recent studies in mouse model systems have demonstrated that inhibition or elimination of PLD activity reduces tumor growth and metastasis. One mechanism proposed for this outcome involves proliferative signaling mediated by receptor tyrosine kinases (RTK) and G protein-coupled receptors (GPCR), which is attenuated when downstream PLD signal propagation is suppressed. The reduced proliferative signaling has been reported to be compounded by dysfunctional energetic metabolism in the tumor cells under conditions of nutrient deprivation. Moreover, cancer cells lacking PLD activity display inefficiencies across multiple steps of the metastatic cascade, limiting the tumor's lethal spread. Using PLD isoform knockout mice, recent studies have reported on the net effects of inhibition and ablation in multiple cancer models through examining the role of PLD in the non-tumor cells comprising the stroma and microenvironment. The promising results of such in vivo studies, combined with the apparent low toxicity of highly-specific and potent inhibitors, highlights PLD as an attractive target for therapeutic inhibition in cancer. We discuss here the array of anti-tumor effects produced by PLD inhibition and ablation in cancer models with a focus on animal studies.
Collapse
Affiliation(s)
- Eric Roth
- The Graduate Program in Molecular and Cellular Pharmacology, The Medical Scientist Training Program, and the Department of Pharmacological Sciences, Stony Brook University, New York, 11794, USA.
| | - Michael A Frohman
- The Graduate Program in Molecular and Cellular Pharmacology, The Medical Scientist Training Program, and the Department of Pharmacological Sciences, Stony Brook University, New York, 11794, USA.
| |
Collapse
|
8
|
Park JY, Lee DS, Kim CE, Shin MS, Seo CS, Shin HK, Hwang GS, An JM, Kim SN, Kang KS. Effects of fermented black ginseng on wound healing mediated by angiogenesis through the mitogen-activated protein kinase pathway in human umbilical vein endothelial cells. J Ginseng Res 2017; 42:524-531. [PMID: 30337813 PMCID: PMC6190532 DOI: 10.1016/j.jgr.2017.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/12/2017] [Accepted: 07/18/2017] [Indexed: 02/06/2023] Open
Abstract
Background Fermented black ginseng (FBG) is produced through several cycles of steam treatment of raw ginseng, at which point its color turns black. During this process, the original ginsenoside components of raw ginseng (e.g., Re, Rg1, Rb1, Rc, and Rb2) are altered, and less-polar ginsenosides are generated (e.g., Rg3, Rg5, Rk1, and Rh4). The aim of this study was to determine the effect of FBG on wound healing. Methods The effects of FBG on tube formation and on scratch wound healing were measured using human umbilical vein endothelial cells (HUVECs) and HaCaT cells, respectively. Protein phosphorylation of mitogen-activated protein kinase was evaluated via Western blotting. Finally, the wound-healing effects of FBG were assessed using an experimental cutaneous wounds model in mice. Results and Conclusion The results showed that FBG enhanced the tube formation in HUVECs and migration in HaCaT cells. Western blot analysis revealed that FBG stimulated the phosphorylation of p38 and extracellular signal-regulated kinase in HaCaT cells. Moreover, mice treated with 25 μg/mL of FBG exhibited faster wound closure than the control mice did in the experimental cutaneous wounds model in mice.
Collapse
Affiliation(s)
- Jun Yeon Park
- College of Korean Medicine, Gachon University, Seongnam, Republic of Korea
| | - Dong-Soo Lee
- Institute of Human-Environment Interface Biology, Biomedical Research Institute, Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chang-Eop Kim
- College of Korean Medicine, Gachon University, Seongnam, Republic of Korea
| | - Myoung-Sook Shin
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| | - Chang-Seob Seo
- K-herb Research Center, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Hyeun-Kyoo Shin
- K-herb Research Center, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Gwi Seo Hwang
- College of Korean Medicine, Gachon University, Seongnam, Republic of Korea
| | - Jun Min An
- GINSENG BY PHARM Co., Ltd., Wonju, Republic of Korea
| | - Su-Nam Kim
- Natural Products Research Institute, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam, Republic of Korea
| |
Collapse
|
9
|
Park JY, Lee YK, Lee DS, Yoo JE, Shin MS, Yamabe N, Kim SN, Lee S, Kim KH, Lee HJ, Roh SS, Kang KS. Abietic acid isolated from pine resin (Resina Pini) enhances angiogenesis in HUVECs and accelerates cutaneous wound healing in mice. JOURNAL OF ETHNOPHARMACOLOGY 2017; 203:279-287. [PMID: 28389357 DOI: 10.1016/j.jep.2017.03.055] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/24/2017] [Accepted: 03/31/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Resin known as Resina Pini is listed in the Korean and Japanese pharmacopoeias and has been used for treating skin wounds and inflammation. Resin is composed of more than 50% abietic acid and 10% neutral substances. OBJECTIVE In the present study, the wound-healing effects of abietic acid and the possible underlying mechanism of action were investigated in various in vitro and in vivo models. MATERIALS AND METHODS The effects of abietic acid on tube formation and migration were measured in human umbilical vein vascular endothelial cells (HUVECs). Protein expression of mitogen-activated protein kinase (MAPK) activation was evaluated via Western blotting analysis. The wound-healing effects of abietic acid were assessed using a mouse model of cutaneous wounds. RESULTS The results showed that abietic acid enhanced cell migration and tube formation in HUVECs. Abietic acid induced significant angiogenic potential, which is associated with upregulation of extracellular signal-regulated kinase (ERK) and p38 expression. Additionally, 0.8μM abietic acid-treated groups showed accelerated wound closure compared to the controls in a mouse model of cutaneous wounds. CONCLUSION The current data indicate that abietic acid treatment elevated cell migration and tube formation in HUVECs by the activation of ERK and p38 MAPKs. We suggest that abietic acid can be developed as a wound-healing agent.
Collapse
Affiliation(s)
- Jun Yeon Park
- College of Korean Medicine, Gachon University, Seongnam 461-701, South Korea.
| | - Yun Kyung Lee
- Department of Korean Medicine, College of Korean Medicine, Daejeon University, Daejeon 300-716, South Korea.
| | - Dong-Soo Lee
- Institute of Human-Environment Interface Biology, Biomedical Research Institute, Department of Dermatology, Seoul National University College of Medicine, Seoul 110-744, South Korea.
| | - Jeong-Eun Yoo
- Department of Gynecology, School of Korean Medicine, Daejeon University, Daejeon 302-869, South Korea.
| | - Myoung-Sook Shin
- Natural Constituents Research Center, Korea Institute of Science and Technology, Gangneung 210-340, South Korea.
| | - Noriko Yamabe
- College of Korean Medicine, Gachon University, Seongnam 461-701, South Korea.
| | - Su-Nam Kim
- Natural Constituents Research Center, Korea Institute of Science and Technology, Gangneung 210-340, South Korea.
| | - Seulah Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, South Korea.
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, South Korea.
| | - Hae-Jeung Lee
- Department of Food and Nutrition, Gachon University, Seongnam-si, Gyeonggi-do, South Korea.
| | - Seok Sun Roh
- Department of Korean Medicine, College of Korean Medicine, Daejeon University, Daejeon 300-716, South Korea.
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 461-701, South Korea.
| |
Collapse
|
10
|
Park EH, Park JY, Yoo HS, Yoo JE, Lee HL. Assessment of the anti-metastatic properties of sanguiin H-6 in HUVECs and MDA-MB-231 human breast cancer cells. Bioorg Med Chem Lett 2016; 26:3291-3294. [DOI: 10.1016/j.bmcl.2016.05.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/05/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
|