1
|
Imantika E, Sasotya RS, Armawan E, Tjandraprawira KD, Rodiani R, Rahim T. Enhanced Proliferation and Adhesion Marker Gene Expression in Fibroblast Cells: Evaluating the Efficacy of a Non-Surgical Treatment for Urogenital Fistula. Med Sci Monit 2023; 29:e941641. [PMID: 37978796 PMCID: PMC10664302 DOI: 10.12659/msm.941641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/11/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Vesicovaginal fistula (VVF) due to posterior bladder wall and/or anterior vaginal wall necrosis is a condition that leads to urinary incontinence. Both microscopic and macroscopic VVFs severely impact quality of life. They are also associated with frequent recurrence after surgery. A non-surgical intervention for VVF is urgently required. A membrane bilayer could act as a mechanical tamponade and stimulate defect closure. MATERIAL AND METHODS This is an experimental study that explored the characteristics of mucoadhesive bilayer membrane complexes for non-operative treatment of VVF in vitro. We synthesized a mucoadhesive bilayer membrane, and inoculated it with cultured fibroblast cells. The mucoadhesive bilayer membrane was prepared with 3 different treatments: (1) estrogen; (2) lyophilized radiation-sterilized amnion (ALSR), a prepared amniotic membrane; and (3) arginine and glutamine (arginine+glutamine), 2 amino acids associated with wound repair. Expression levels of 3 genes, namely tumor growth factor beta (TGF-ß), lysil oxidase (LOX), and junctional adhesion molecules (JAMs), were measured using the Livak method and polymerase chain reaction (PCR). RESULTS On the fifth day after inoculation, there was no statistically significant difference in expression of the genes in the 3 conditions. However, on the tenth day, gene expression of the LOX and JAMs genes in the fibroblast cells inoculated onto the mucoadhesive bilayer membrane with arginine+glutamine was significantly higher than the expression in the fibroblast cells inoculated onto the mucoadhesive bilayer membrane with estrogen or with ALSR. CONCLUSIONS The mucoadhesive bilayer membrane complex with arginine+glutamine gave rise to the highest expression of the LOX and JAMs genes, indicating that the highest proliferation and cell adhesion were found in cells inoculated with the mucoadhesive bilayer membrane complex with arginine+glutamine.
Collapse
Affiliation(s)
- Efriyan Imantika
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Padjadjaran, Bandung, West Java, Indonesia
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Lampung, Bandar Lampung, Lampung, Indonesia
| | - R.M. Sonny Sasotya
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Padjadjaran, Bandung, West Java, Indonesia
| | - Edwin Armawan
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Padjadjaran, Bandung, West Java, Indonesia
| | - Kevin D. Tjandraprawira
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Padjadjaran, Bandung, West Java, Indonesia
| | - Rodiani Rodiani
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Lampung, Bandar Lampung, Lampung, Indonesia
| | - Taufiqurrahman Rahim
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Lampung, Bandar Lampung, Lampung, Indonesia
| |
Collapse
|
2
|
Wang B, Gong S, Han L, Shao W, Li Z, Xu J, Lv X, Xiao B, Feng Y. Knockdown of HDAC9 Inhibits Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells Partially by Suppressing the MAPK Signaling Pathway. Clin Interv Aging 2022; 17:777-787. [PMID: 35592642 PMCID: PMC9113040 DOI: 10.2147/cia.s361008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/05/2022] [Indexed: 11/23/2022] Open
Abstract
Background Histone deacetylase 9 (HDAC9) is a member of the HDAC gene family that plays essential roles in the organization of transcriptional regulation by catalyzing deacetylation of histone proteins. However, the effects of HDAC9 on osteonecrosis of femoral head (ONFH) have not been investigated. The present study aimed to reveal whether histone deacetylase 9 (HDAC9) regulated osteogenic differentiation. Methods A lentiviral knockdown HDAC9 model was established in hBMSCs. Osteoblast-specific gene expression, such as Runx2, OCN was examined by qRT-PCR and Western blot, respectively. Though transcriptome sequencing and enrichment analysis, related signal pathways caused by down-regulation of HDAC9 were screened. The effect of HDAC9 on MAPK signaling pathway was determined by Western blot. Eventually, tert-Butylhydroquinone (tBHQ) was used to examine the effect of MAPK activation on osteogenesis in HDAC9 knockdown hBMSCs. Results A lentiviral knockdown HDAC9 model was successfully established in hBMSCs. HDAC9 knockdown significantly inhibited osteoblast-specific gene expression, such as runt-related transcription factor 2 (Runx2), osteocalcin (OCN) and mineral deposition in vitro. Moreover, a total of 950 DEGs were identified in HDAC9-knockdown hBMSCs. We discovered that the MAPK signaling pathway might be related to this process by pathway enrichment analysis. HDAC9 knockdown significantly reduced the expression level of phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2). Finally, the decreased osteogenesis due to HDAC9 knockdown was partly rescued by a MAPK signaling pathway activator. Conclusion Taken together, these results suggest that HDAC9 knockdown inhibits osteogenic differentiation of hBMSCs, partially through the MAPK signaling pathway. HDAC9 may serve as a potential target for the treatment of ONFH.
Collapse
Affiliation(s)
- Bo Wang
- Department of Rehabilitation, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Song Gong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Lizhi Han
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Wenkai Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Zilin Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Jiawei Xu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Xiao Lv
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Baojun Xiao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Correspondence: Baojun Xiao; Yong Feng, Email ;
| | - Yong Feng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| |
Collapse
|
3
|
Yin Y, Wang Q, Xie C, Chen H, Jin J, Miao D. Amniotic membrane mesenchymal stem cells-based therapy improves Bmi-1-deficient mandible osteoporosis through stimulating osteoblastic bone formation and inhibiting osteoclastic bone resorption. J Tissue Eng Regen Med 2022; 16:538-549. [PMID: 35319819 DOI: 10.1002/term.3300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 11/10/2022]
Abstract
Mandible osteoporosis with age is characterized by greater fragility and accompanied with abnormal oral function. Mesenchymal stem cell transplantation can ameliorate osteoporosis. Bmi-1 is a transcriptional repressor which is an important regulator of cell cycle, stem cells self-renewal, and cell senescence. Here, we use a new kind of membrane mesenchymal stem cells (MSCs), amniotic membrane mesenchymal stem cells (AMSCs), to explore therapeutic effects on Bmi-1-deficient caused mandible osteoporosis. Phenotypes of mandibles from 5-week-old Bmi-1-deficient mice with AMSCs-based therapy were compared with age-matched Bmi-1-deficient mandibles without AMSCs-based therapy and wild-type mice. Bmi-1-deficient mice without AMSCs-based therapy displayed mandible osteoporosis accompanied with the rising senescence-associated molecules and imbalance redox homeostasis. Results showed that the alveolar bone volume, cortical thickness, type I collagen and osteocalcin immunopositive areas, mRNA expression levels of alkaline phosphatase, superoxide dismutase, gluathione reductase, and protein expression level of Runx2 were all reduced significantly in Bmi-1-/- mandibles. Protein levels of PPARγ, p16, p21, p53, and redox gene levels of Bnip3l, Cdo1, Duox1, and Duox2 were up-regulated in mandibles from vehicle-transplanted Bmi-1-/- mice. Also, osteoclasts were activated in Bmi-1-/- alveolar bone. Transplanted AMSCs migrated into mandibles and improved all the parameters in Bmi-1-/- mandibles with AMSCs-based therapy. These findings indicate that AMSCs-based therapy could rescue mandible osteoporosis induced by Bmi-1 deficiency through stimulating osteoblastic bone formation and inhibiting osteoclastic bone resorption. Our findings implied that AMSCs-based therapy had preventative and therapeutic potential for mandible osteoporosis.
Collapse
Affiliation(s)
- Ying Yin
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Anatomy, Histology and Embryology, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, China
| | - Qiujiao Wang
- Department of Anatomy, Histology and Embryology, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, China.,Department of Stomatology, The Affiliated Jiangyin Hospital of Medical College of Southeast University, Jiangyin, China
| | - Chunfeng Xie
- Department of Anatomy, Histology and Embryology, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, China
| | - Haiyun Chen
- Department of Anatomy, Histology and Embryology, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, China
| | - Jianliang Jin
- Department of Anatomy, Histology and Embryology, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, China
| | - Dengshun Miao
- Department of Anatomy, Histology and Embryology, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, China.,Department of Plastic Surgery, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
De la Fuente-Hernandez MA, Sarabia-Sanchez MA, Melendez-Zajgla J, Maldonado-Lagunas V. Role of lncRNAs into Mesenchymal Stromal Cell Differentiation. Am J Physiol Cell Physiol 2022; 322:C421-C460. [PMID: 35080923 DOI: 10.1152/ajpcell.00364.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Currently, findings support that 75% of the human genome is actively transcribed, but only 2% is translated into a protein, according to databases such as ENCODE (Encyclopedia of DNA Elements) [1]. The development of high-throughput sequencing technologies, computational methods for genome assembly and biological models have led to the realization of the importance of the previously unconsidered non-coding fraction of the genome. Along with this, noncoding RNAs have been shown to be epigenetic, transcriptional and post-transcriptional regulators in a large number of cellular processes [2]. Within the group of non-coding RNAs, lncRNAs represent a fascinating field of study, given the functional versatility in their mode of action on their molecular targets. In recent years, there has been an interest in learning about lncRNAs in MSC differentiation. The aim of this review is to address the signaling mechanisms where lncRNAs are involved, emphasizing their role in either stimulating or inhibiting the transition to differentiated cell. Specifically, the main types of MSC differentiation are discussed: myogenesis, osteogenesis, adipogenesis and chondrogenesis. The description of increasingly new lncRNAs reinforces their role as players in the well-studied field of MSC differentiation, allowing a step towards a better understanding of their biology and their potential application in the clinic.
Collapse
Affiliation(s)
- Marcela Angelica De la Fuente-Hernandez
- Facultad de Medicina, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Laboratorio de Epigenética, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Miguel Angel Sarabia-Sanchez
- Facultad de Medicina, Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jorge Melendez-Zajgla
- Laboratorio de Genómica Funcional del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | | |
Collapse
|
5
|
The angiogenic properties of human amniotic membrane stem cells are enhanced in gestational diabetes and associate with fetal adiposity. Stem Cell Res Ther 2021; 12:608. [PMID: 34930438 PMCID: PMC8691045 DOI: 10.1186/s13287-021-02678-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 12/09/2021] [Indexed: 11/29/2022] Open
Abstract
Background An environment of gestational diabetes mellitus (GDM) can modify the phenotype of stem cell populations differentially according to their placental localization, which can be useful to study the consequences for the fetus. We sought to explore the effect of intrauterine GDM exposure on the angiogenic properties of human amniotic membrane stem cells (hAMSCs). Methods We comprehensively characterized the angiogenic phenotype of hAMSCs isolated from 14 patients with GDM and 14 controls with normal glucose tolerance (NGT). Maternal and fetal parameters were also recorded. Hyperglycemia, hyperinsulinemia and palmitic acid were used to in vitro mimic a GDM-like pathology. Pharmacological and genetic inhibition of protein function was used to investigate the molecular pathways underlying the angiogenic properties of hAMSCs isolated from women with GDM. Results Capillary tube formation assays revealed that GDM-hAMSCs produced a significantly higher number of nodes (P = 0.004), junctions (P = 0.002) and meshes (P < 0.001) than equivalent NGT-hAMSCs, concomitant with an increase in the gene/protein expression of FGFR2, TGFBR1, SERPINE1 and VEGFA. These latter changes were recapitulated in NGT-hAMSCs exposed to GDM-like conditions. Inhibition of the protein product of SERPINE1 (plasminogen activator inhibitor 1, PAI-1) suppressed the angiogenic properties of GDM-hAMSCs. Correlation analyses revealed that cord blood insulin levels in offspring strongly correlated with the number of nodes (r = 0.860; P = 0.001), junctions (r = 0.853; P = 0.002) and meshes (r = 0.816; P = 0.004) in tube formation assays. Finally, FGFR2 levels correlated positively with placental weight (r = 0.586; P = 0.028) and neonatal adiposity (r = 0.496; P = 0.014). Conclusions GDM exposure contributes to the angiogenic abilities of hAMSCs, which are further related to increased cord blood insulin and fetal adiposity. PAI-1 emerges as a potential key player of GDM-induced angiogenesis.
Collapse
|
6
|
Xiao F, Tang CY, Tang HN, Wu HX, Hu N, Li L, Zhou HD. Long Non-coding RNA 332443 Inhibits Preadipocyte Differentiation by Targeting Runx1 and p38-MAPK and ERK1/2-MAPK Signaling Pathways. Front Cell Dev Biol 2021; 9:663959. [PMID: 34169072 PMCID: PMC8217766 DOI: 10.3389/fcell.2021.663959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as integral regulators of pathophysiological processes, but their specific roles and mechanisms in adipose tissue development remain largely unknown. Here, through microarray analysis, co-expression, and tissue specific analysis of adipocyte tissues after fasting for 72 h, we found that Lnc-FR332443 expression was dramatically decreased, as well as the expression of Runx1. The UCSC database and Ensembl database indicated that Lnc-FR332443 is the antisense lncRNA of Runx1. Lnc-FR332443 and Runx1 are highly enriched in adipose tissue and downregulated during adipogenic differentiation. Adipose tissue-specific knockdown of Lnc-FR332443 increased fat mass in vivo, and specific knockdown of Lnc-FR332443 in 3T3-L1 preadipocytes promoted adipogenic differentiation. In this process, Runx1 expression was decreased when Lnc-FR332443 was downregulated in adipocytes or 3T3-L1 preadipocytes, and vice versa, when Lnc-FR332443 was upregulated, the expression of Runx1 was increased. However, overexpression of Runx1 decreased the expression of the adipocyte cell marker genes PPARγ, C/EBPα and FABP4 significantly, while not affected the expression of Lnc-FR332443. Mechanistically, Lnc-FR332443 positively regulates Runx1 expression in mouse adipocytes and suppresses adipocyte differentiation by attenuating the phosphorylation of MAPK-p38 and MAPK-ERK1/2 expression. Thus, this study indicated that Lnc-FR332443 inhibits adipogenesis and which might be a drug target for the prevention and treatment of obesity.
Collapse
Affiliation(s)
- Fen Xiao
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chen-Yi Tang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hao-Neng Tang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui-Xuan Wu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Nan Hu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Long Li
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hou-De Zhou
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
7
|
Yi S, Kim J, Lee SY. GDNF secreted by pre-osteoclasts induces migration of bone marrow mesenchymal stem cells and stimulates osteogenesis. BMB Rep 2020. [PMID: 33148376 PMCID: PMC7781916 DOI: 10.5483/bmbrep.2020.53.12.199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Bone resorption is linked to bone formation via temporal and spatial coupling within the remodeling cycle. Several lines of evidence point to the critical role of coupling factors derived from pre-osteoclasts (POCs) during the regulation of bone marrow-derived mesenchymal stem cells (BMMSCs). However, the role of glial cell-derived neurotrophic factor (GDNF) in BMMSCs is not completely understood. Herein, we demonstrate the role of POC-derived GDNF in regulating the migration and osteogenic differentiation of BMMSCs. RNA sequencing revealed GDNF upregulation in POCs compared with monocytes/macrophages. Specifically, BMMSC migration was inhibited by a neutralizing antibody against GDNF in pre-osteoclast-conditioned medium (POC-CM), whereas treatment with a recombinant GDNF enhanced migration and osteogenic differentiation. In addition, POC-CM derived from GDNF knockdowned bone marrow macrophages suppressed BMMSC migration and osteogenic differentiation. SPP86, a small molecule inhibitor, inhibits BMMSC migration and osteogenic differentiation by targeting the receptor tyrosine kinase RET, which is recruited by GDNF into the GFRα1 complex. Overall, this study highlights the role of POC-derived GDNF in BMMSC migration and osteogenic differentiation, suggesting that GDNF regulates bone meta-bolism.
Collapse
Affiliation(s)
- Sol Yi
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Jihee Kim
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Soo Young Lee
- Department of Life Science, Ewha Womans University, Seoul 03760, Korea
- The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
8
|
Jin Q, Li P, Yuan K, Zhao F, Zhu X, Zhang P, Huang Z. Extracellular vesicles derived from human dental pulp stem cells promote osteogenesis of adipose-derived stem cells via the MAPK pathway. J Tissue Eng 2020; 11:2041731420975569. [PMID: 33312494 PMCID: PMC7716067 DOI: 10.1177/2041731420975569] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/02/2020] [Indexed: 12/17/2022] Open
Abstract
Recent studies have shown that co-culture systems play an important role in bone tissue engineering. In this study, human dental pulp stem cells (hDPSCs) were co-cultured with human adipose-derived stem cells (hADSCs), and osteoblastic phenotypes were found to be enhanced in co-cultures compared with monocultures of hDPSCs or hADSCs. Furthermore, GW4869, an inhibitor of extracellular vesicle (EV) formation, suppressed the mineralization of co-cultured cells. Studies indicate that the therapeutic potential of DPSCs is realized through paracrine action, in which EVs play an important role. To study their role, we successfully obtained and identified hDPSC-derived extracellular vesicles (hDPSC-EVs), and further investigated their effects on hADSCs and the underlying mechanism. hADSCs were stimulated with hDPSC-EVs, which were found to promote the migration and mineralization of hADSCs. Moreover, hDPSC-EVs promoted osteogenic differentiation by enhancing the phosphorylation of ERK 1/2 and JNK in hADSCs. To investigate the specific proteins in EVs that might play a role in hADSC osteogenic differentiation, we performed proteomic analysis of hDPSC-EVs. We determined the top 30 enriched pathways, which notably included the insulin signaling pathway. The number of genes enriched in the insulin signaling pathway was the largest, in addition to the “protein processing in endoplasmic reticulum” term. The MAPK cascade is a typical downstream pathway mediating insulin signaling. To further study the effects of hDPSC-EVs on maxillofacial bone regeneration, we used hDPSC-EVs as a cell-free biomaterial in a model of mandibular defects in rats. To assess the therapeutic potential of EVs, we analyzed their proteome. Animal experiments demonstrated that hDPSC-EVs promoted the regeneration of bone defects. Overall, these results highlight the potential of hDPSC-EVs to induce lineage specific differentiation of hADSCs. The results also indicated the importance of considering hDPSC-EVs as biomimetic materials for clinical translation of treatments for oral maxillofacial defects.
Collapse
Affiliation(s)
- Qiaoqiao Jin
- Department of Endodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Peilun Li
- Department of Endodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Keyong Yuan
- Department of Endodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Fen Zhao
- Department of Endodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xiaohan Zhu
- Department of Endodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Pengfei Zhang
- Department of Endodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhengwei Huang
- Department of Endodontics, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
9
|
He D, Zhao F, Jiang H, Kang Y, Song Y, Lin X, Shi P, Zhang T, Pang X. LOXL2 from human amniotic mesenchymal stem cells accelerates wound epithelialization by promoting differentiation and migration of keratinocytes. Aging (Albany NY) 2020; 12:12960-12986. [PMID: 32621591 PMCID: PMC7377892 DOI: 10.18632/aging.103384] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 05/01/2020] [Indexed: 12/11/2022]
Abstract
In this study, we identified wound healing-related proteins secreted by human amniotic epithelial cells (hAECs) and human amniotic mesenchymal stem cells (hAMSCs). We observed increased migration and reduced proliferation and differentiation when keratinocytes were co-cultured in media conditioned by hAECs (hAECs-CM) and hAMSCs (hAMSCs-CM). Label-free mass spectrometry and bioinformatic analyses of the hAECs-CM and hAMSCs-CM proteome revealed several proteins associated with wound healing, angiogenesis, cellular differentiation, immune response and cell motility. The levels of the proteins related to wound healing, including CTHRC1, LOXL2 and LGALS1, were significantly higher in hAMSCs-CM than hAECs-CM. LOXL2 significantly enhanced in vitro keratinocyte migration and differentiation compared to CTHRC1 and LGALS1. Moreover, LOXL2 enhanced keratinocyte migration and differentiation by activating the JNK signaling pathway. We observed significant reduction in the in vitro migration and differentiation of keratinocytes when co-cultured with medium conditioned by LOXL2-silenced hAMSCs and when treated with 10 μM SP600125, a specific JNK inhibitor. Treatment with hAMSCs-CM and LOXL2 significantly accelerated wound healing in the murine skin wound model. These findings show that LOXL2 promotes wound healing by inducing keratinocyte migration and differentiation via a JNK signaling pathway.
Collapse
Affiliation(s)
- Dan He
- Department of Stem Cells and Regenerative Medicine, Shenyang Key Laboratory of Stem Cell and Regenerative Medicine, China Medical University, Shenyang 110013, Liaoning, China
| | - Feng Zhao
- Department of Stem Cells and Regenerative Medicine, Shenyang Key Laboratory of Stem Cell and Regenerative Medicine, China Medical University, Shenyang 110013, Liaoning, China
| | - Han Jiang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Yue Kang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Yang Song
- Department of Stem Cells and Regenerative Medicine, Shenyang Key Laboratory of Stem Cell and Regenerative Medicine, China Medical University, Shenyang 110013, Liaoning, China.,Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Xuewen Lin
- Department of Stem Cells and Regenerative Medicine, Shenyang Key Laboratory of Stem Cell and Regenerative Medicine, China Medical University, Shenyang 110013, Liaoning, China
| | - Ping Shi
- Shenyang Amnion Bioengineering and Technology R & D Center, Shenyang Liaoning Amnion Stem Cell and Regenerative Medicine Professional Technology Innovation Platform, Liaoning Human Amniotic Membrane Biological Dressing Stem Cell and Regenerative Medicine Engineering Research Center, Shenyang 110015, Liaoning, China
| | - Tao Zhang
- Department of Stem Cells and Regenerative Medicine, Shenyang Key Laboratory of Stem Cell and Regenerative Medicine, China Medical University, Shenyang 110013, Liaoning, China
| | - Xining Pang
- Department of Stem Cells and Regenerative Medicine, Shenyang Key Laboratory of Stem Cell and Regenerative Medicine, China Medical University, Shenyang 110013, Liaoning, China.,Shenyang Amnion Bioengineering and Technology R & D Center, Shenyang Liaoning Amnion Stem Cell and Regenerative Medicine Professional Technology Innovation Platform, Liaoning Human Amniotic Membrane Biological Dressing Stem Cell and Regenerative Medicine Engineering Research Center, Shenyang 110015, Liaoning, China
| |
Collapse
|
10
|
MicroRNA-16, via FGF2 Regulation of the ERK/MAPK Pathway, Is Involved in the Magnesium-Promoted Osteogenic Differentiation of Mesenchymal Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3894926. [PMID: 32411326 PMCID: PMC7201663 DOI: 10.1155/2020/3894926] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/16/2020] [Indexed: 12/26/2022]
Abstract
microRNAs (miRNAs) participate in the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). However, few reports have discussed the effect of miRNAs on the magnesium chloride (MgCl2)-induced promotion of osteogenic differentiation of BMSCs, a process involved in the healing of bone tissue. As determined in the present investigation, MgCl2 decreased miR-16 levels; increased levels of fibroblast growth factor 2 (FGF2), p-p38, and p-ERK; and promoted the osteogenic differentiation of BMSCs. Enhancement of miR-16 levels by an miR-16 mimic blocked these MgCl2-induced changes. Moreover, luciferase reporter assays confirmed that miR-16 binds to the 3'UTR region of FGF2 mRNA. Down-regulation of FGF2 blocked the MgCl2-induced increases of p-p38 and p-ERK and the promotion of the osteogenic differentiation of BMSCs. Furthermore, over-expression of miR-16 attenuated the MgCl2-induced overproduction of p-p38 and p-ERK1/2 and the high levels of osteogenic differentiation, effects that were reversed by elevated expression of FGF2. In summary, the present findings provide a mechanism by which miR-16 regulates MgCl2-induced promotion of osteogenic differentiation by targeting FGF2-mediated activation of the ERK/MAPK pathway.
Collapse
|
11
|
Lopez-Martos R, Martin-Lozano G, Ocete-Perez RF, Gonzalez-Perez LM, Gutierrez-Perez JL, Infante-Cossio P. Application of Human Amniotic Membrane in Temporomandibular Joint Osteoarthritis. J Craniofac Surg 2020; 31:e424-e426. [PMID: 32195845 DOI: 10.1097/scs.0000000000006424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Human amniotic membrane (HAM) has recently been used as an interpositional material to prevent ankylosis or primary re-ankylosis after temporomandibular joint (TMJ) arthroplasty. Here, the authors describe an unusual case of a 32-year-old woman who presented with a noninflammatory degenerative osteoarthritis of the TMJ in which a HAM was placed following a high condylar arthroplasty and discectomy and show the clinicoradiological results. The procedure resulted in total pain relief and significant improvement in jaw movements. On the long-term follow-up computed tomography, complete remodeling of the glenoid fossa with formation of new ectopic bone was observed. While the application of a HAM can be an alternative procedure to prevent ankylosis when performing a discectomy and arthroplasty, this clinical report highlights the possibility that it can induce ectopic bone formation at this location.
Collapse
|
12
|
Bian Y, Du Y, Wang R, Chen N, Du X, Wang Y, Yuan H. A comparative study of HAMSCs/HBMSCs transwell and mixed coculture systems. IUBMB Life 2019; 71:1048-1055. [PMID: 31112365 DOI: 10.1002/iub.2074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/16/2019] [Accepted: 05/06/2019] [Indexed: 12/13/2022]
Abstract
Our previous studies indicated that a coculture system containing human amnion-derived mesenchymal stem cells (HAMSCs) and human bone marrow mesenchymal stem cells (HBMSCs) has the potential of application for bone regeneration. However, there is currently no enough comparative investigation between HAMSCs/HBMSCs transwell and mixed coculture systems. This study aimed to assess the phenotype and mechanisms regulated by indirect and direct coculture systems, respectively. Two in vitro models were employed with HAMSCs and HBMSCs at a ratio of 3:1, and then were analyzed by a series of processes, including flow cytometry, alkaline phosphatase (ALP) substrate assays, Alizarin red S staining, quantitative reverse transcription polymerase chain reaction (RT-qPCR), and Western blot analysis. We found that cell proliferation, ALP activity, mineralized matrix formation, and osteoblast-related mRNA expression were accelerated in transwell coculture system compared with mixed coculture system. Conditioned medium from transwell coculture system achieved an elevated level of vascular endothelial growth factor and induced more vascular structures in human umbilical vein endothelial cells than those of mixed coculture system. Moreover, we observed that transwell coculture system, promoted osteogenesis and angiogenesis by maintaining stemness through extracellular regulated protein kinases 1/2 (ERK1/2) mitogen-activated protein kinase (MAPK) signaling pathway. U0126, a selective inhibitor of ERK1/2 MAPK signaling, significantly suppressed maintaining of the stemness-based effects on transwell coculture system. Taken together, our results compared the merits of two different models and clarified the role of HAMSCs/HBMSCs transwell coculture system in the development of bone tissue engineering. © 2019 IUBMB Life, 2019.
Collapse
Affiliation(s)
- Yifeng Bian
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Yifei Du
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Ruixia Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Dental Implant, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Ning Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Xin Du
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
| | - Yuli Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Hua Yuan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Abbasi-Kangevari M, Ghamari SH, Safaeinejad F, Bahrami S, Niknejad H. Potential Therapeutic Features of Human Amniotic Mesenchymal Stem Cells in Multiple Sclerosis: Immunomodulation, Inflammation Suppression, Angiogenesis Promotion, Oxidative Stress Inhibition, Neurogenesis Induction, MMPs Regulation, and Remyelination Stimulation. Front Immunol 2019; 10:238. [PMID: 30842772 PMCID: PMC6391358 DOI: 10.3389/fimmu.2019.00238] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/28/2019] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory and degenerative disorder of the central nervous system with unknown etiology. It is accompanied by demyelination of the nerves during immunological processes in the presence of oxidative stress, hypoxia, cerebral hypo-perfusion, and dysregulation in matrix metalloproteinases (MMPs). Human amniotic mesenchymal stem cells (hAMSCs) as pluripotent stem cells possess some conspicuous features which could be of therapeutic value in MS therapy. hAMSCs could mimic the cascade of signals and secrete factors needed for promoting formation of stable neovasculature and angiogenesis. hAMSCs also have immunomodulatory and immunosuppressive effects on inflammatory processes and reduce the activity of inflammatory cells, migration of microglia and inhibit recruitment of certain immune cells to injury sites. hAMSCs attenuate the oxidative stress supported by the increased level of antioxidant enzymes and the decreased level of lipid peroxidation products. Furthermore, hAMSCs enhance neuroprotection and neurogenesis in brain injuries by inhibition of inflammation and promotion of neurogenesis. hAMSCs could significantly increase the expression of neurotrophic factors, which prevents neurons from initiating programmed cell death and improves survival, development, and function of neurons. In addition, they induce differentiation of neural progenitor cells to neurons. hAMSCs could also inhibit MMPs dysregulation and consequently promote the survival of endothelial cells, angiogenesis and the stabilization of vascular networks. Considering the mentioned evidences, we hypothesized here that hAMSCs and their conditioned medium could be of therapeutic value in MS therapy due to their unique properties, including immunomodulation and inflammation suppression; angiogenesis promotion; oxidative stress inhibition; neurogenesis induction and neuroprotection; matrix metalloproteinases regulation; and remyelination stimulation.
Collapse
Affiliation(s)
- Mohsen Abbasi-Kangevari
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyyed-Hadi Ghamari
- Student Research Committee, Social Determinants of Health Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Safaeinejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Zhang C, Du Y, Yuan H, Jiang F, Shen M, Wang Y, Wang R. HAMSCs/HBMSCs coculture system ameliorates osteogenesis and angiogenesis against glucolipotoxicity. Biochimie 2018; 152:121-133. [PMID: 30103897 DOI: 10.1016/j.biochi.2018.06.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 06/30/2018] [Indexed: 12/16/2022]
Abstract
Osteoporosis and vascular lesions induced by glucolipotoxicity are common complications of diabetes mellitus (DM). In order to deal with these complications, we designed a new therapeutic strategy, i.e. coculture system containing human amnion-derived mesenchymal stem cells (HAMSCs) and human bone marrow mesenchymal stem cells (HBMSCs). Two in vitro coculture models, transwell and mixed cocultures, were proposed for 7 days with variable HAMSCs: HBMSCs ratios. Then, supernatant from each coculture was used to reverse the deficiency of HBMSCs and human umbilical vein endothelial cells (HUVECs) impaired by high glucose and palmitic acid (GP). We found that glucolipotoxicity caused by GP remarkably inhibited cell proliferation, osteogenic differentiation and superoxide dismutase (SOD) activity, as well as induced the reactive oxygen species (ROS) level in HBMSCs. Meanwhile, glucolipotoxicity suppressed cell proliferation, tube formation capacity and angiogenic potential of HUVECs. Though, HAMSCs/HBMSCs coculture system reduced HBMSCs dysfunction by antioxidant properties and promoted angiogenesis in HUVECs. The mixed HAMSCs/HBMSCs coculture at the optimal ratio of 3/1 showed significantly greater cell proliferation, antioxidant properties, osteogenic and angiogenic differentiation than HBMSCs or HUVECs alone. In conclusion, the current coculture system of HAMSCs/HBMSCs can be a potential therapeutic material for advancing bone and vascular regeneration against DM-induced glucolipotoxicity.
Collapse
Affiliation(s)
- Chunli Zhang
- Department of Clinical Research, Friendship Plastic Surgery Hospital, Nanjing Medical University, Nanjing, China
| | - Yifei Du
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Hua Yuan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Fei Jiang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Department of Polyclinic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Ming Shen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Department of Dental Implant, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yuli Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| | - Ruixia Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; Department of Dental Implant, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|