1
|
Pan BS, Lin CY, Lee GA, Lin HK. Targeting SETDB1 in cancer and immune regulation: Potential therapeutic strategies in cancer. Kaohsiung J Med Sci 2025; 41:e12933. [PMID: 39764697 DOI: 10.1002/kjm2.12933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 03/12/2025] Open
Abstract
SET domain bifurcated histone lysine methyltransferase 1 (SETDB1/ESET), a pivotal H3K9 methyltransferase, has been extensively studied since its discovery over two decades ago. SETDB1 plays critical roles in immune regulation, including B cell maturation, T-cell activity modulation, and endogenous retrovirus (ERV) silencing. While essential for normal immune cell function, SETDB1 overexpression in cancer cells disrupts immune responses by suppressing tumor immunogenicity and facilitating immune evasion. This is achieved through the repression of anti-tumor immune cell production, ERV silencing, and interference with the type I interferon pathway leading to inhibiting immune checkpoint blockade (ICB) efficacy. Beyond its immunological implications, SETDB1 overexpression fosters tumor growth and metastasis via transcriptional silencing of tumor suppressor genes through histone regulation and activating oncogenic signaling by non-histone regulation. These multifaceted roles make SETDB1 an attractive epigenetic target for novel cancer therapies. This review explores SETDB1's dual function in immune regulation and tumor progression, emphasizing its potential in the development of innovative cancer treatments targeting epigenetic dysregulation and oncogenic signaling.
Collapse
Affiliation(s)
- Bo-Syong Pan
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Cheng-Yu Lin
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Gilbert Aaron Lee
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | - Hui-Kuan Lin
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
2
|
Igarashi Y, Akiyama Y, Shimada S, Watanabe S, Hatano M, Kodera K, Okazaki K, Tanji Y, Tsukihara S, Taniai T, Nara A, Yamane M, Kamachi A, Umemura K, Yasukawa K, Ono H, Akahoshi K, Tanabe M, Haruki K, Furukawa K, Ikegami T, Tanaka S. Identification and clinical implications of endogenous retrovirus elements suppressed by SETDB1 in hepatocellular carcinoma. JHEP Rep 2025; 7:101307. [PMID: 40059971 PMCID: PMC11889587 DOI: 10.1016/j.jhepr.2024.101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND & AIMS The inhibition of epigenetic regulators activates endogenous retrovirus (ERV) expression, which can stimulate a viral mimicry response in cancer cells. ERV elements are aberrantly expressed in hepatocellular carcinoma (HCC); however, the expression of ERVs regulated by histone modifications and their clinical significance in HCC remain unclear. Here, we identified specific human endogenous retrovirus (HERV) elements epigenetically suppressed by the histone methyltransferase SETDB1 in HCC. METHODS The Cancer Genome Atlas (TCGA) dataset was analyzed to identify HERV elements based on SETDB1 expression levels. SETDB1 knockdown (KD) was performed in mouse and human HCC cells to investigate the resulting biological effects and changes in HERV expression, both in vitro and in vivo. RESULTS TCGA analysis revealed an inverse correlation between SETDB1 and retroelements in human HCC (R = -0.723, p = 2.297 × 10-40), identifying four specific HERV elements in SETDB1-high expressing HCC cases. Low expression of these four HERVs was associated with poor prognosis, and their combined expression provided additional prognostic insight (p <0.001). Increased expression of the four HERV elements and decreased H3K9me3 levels at these regions were detected in human HCC cells with SETDB1-KD. In murine HCC cells, Setdb1-KD impaired in vivo tumor growth with increasing CD8-positive T-cell infiltration. Moreover, the interferon α response pathway and multiple ERV elements were activated in mouse HCC cells with Setdb1-KD. The expression of interferon-stimulated genes, as indicators of a viral mimicry response, was elevated in both murine and human SETDB1-KD HCC cells. CONCLUSIONS The suppression of four novel HERV elements by SETDB1 serves as a prognostic marker in HCC. Activation of these SETDB1-regulated HERVs could represent a promising therapeutic strategy for HCC. IMPACT AND IMPLICATIONS An inverse relationship between retroelements including human endogenous retrovirus (HERV) elements and SETDB1 expression was observed in human hepatocellular carcinoma (HCC) by The Cancer Genome Atlas data analysis. We identified four HERV elements downregulated by SETDB1-dependent H3K9me3 in HCC cells, with low expression levels of these HERV elements correlating with poor prognosis in patients with HCC. SETDB1 depletion resulted in upregulation of various interferon-stimulated genes associated with viral mimicry in HCC cells. These findings suggest that the four SETDB1-regulated HERVs could serve as prognostic markers and potential therapeutic targets for HCC.
Collapse
Affiliation(s)
- Yosuke Igarashi
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Yoshimitsu Akiyama
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shu Shimada
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shuichi Watanabe
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Megumi Hatano
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keita Kodera
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Kohei Okazaki
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Yoshiaki Tanji
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Shu Tsukihara
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Tomohiko Taniai
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Atsushi Nara
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masahiro Yamane
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsushi Kamachi
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kentaro Umemura
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Koya Yasukawa
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hiroaki Ono
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keiichi Akahoshi
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Minoru Tanabe
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koichiro Haruki
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Kenei Furukawa
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Toru Ikegami
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
3
|
Naik A, Thakur N. Epigenetic regulation of TGF-β and vice versa in cancers - A review on recent developments. Biochim Biophys Acta Rev Cancer 2024; 1879:189219. [PMID: 39549878 DOI: 10.1016/j.bbcan.2024.189219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
This review explores the complex relationship between epigenetic mechanisms and Transforming Growth Factor-beta (TGF-β) signalling pathways in the field of cancer research. The study provides an overview of the latest advancements in understanding the crucial functions of epigenetic alterations, such as DNA methylation, histone modifications, and chromatin remodeling, in significantly impacting the TGF-β signalling pathway. The dynamic epigenetic modifications are essential in determining the behaviour of cancer cells, impacting the interactions with the tumor microenvironment, and affecting the overall process of carcinogenesis. Significant attention is given to Breast cancer, Lung cancer, Liver cancer, Prostate cancer, and Pancreatic cancer. Research has revealed intricate regulatory networks in these cancers, involving long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and histone post-translational modifications. These networks are closely connected to TGF-β signalling. Both findings highlight the significant interaction between epigenetic regulation and TGF-β signalling in cancer. They provide valuable insights that can guide the development of new treatment approaches to target both pathways and prevent cancer growth and metastasis.
Collapse
Affiliation(s)
- Ankit Naik
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Noopur Thakur
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Navrangpura, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
4
|
Sirek T, Sirek A, Borawski P, Zmarzły N, Sułkowska J, Król-Jatręga K, Opławski M, Boroń D, Chalcarz M, Ossowski P, Dziobek K, Strojny D, Boroń K, Janiszewska-Bil D, Grabarek BO. miRNAs in Signal Transduction of SMAD Proteins in Breast Cancer. Int J Mol Sci 2024; 25:10088. [PMID: 39337574 PMCID: PMC11432703 DOI: 10.3390/ijms251810088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
The aim of this study was to identify miRNAs that could potentially influence the activity of SMAD proteins involved in TGFβ signal transduction in five types of breast cancer in Polish women. Patients with five breast cancer subtypes were included in the study: luminal A (n = 130), luminal B HER2- (n = 100), luminal B HER2+ (n = 96), non-luminal HER2+ (n = 36), and TNBC (n = 43). During surgery, tumor tissue was removed along with a margin of healthy tissue (control). Molecular analysis included determination of the expression of genes related to SMAD protein signal transduction using mRNA microarrays and reverse transcription quantitative polymerase chain reaction (RT-qPCR). Protein expression was determined using an enzyme-linked immunosorbent assay (ELISA). The miRNA profiling was performed using miRNA microarrays and the miRDB database. SMAD3 and SMAD5 were overexpressed in all types of breast cancer, which could be related to the reduced expression of miR-145, and the findings for SMAD4 and miR-155 were similar. Additionally, the level of SMAD7 was reduced, which may be due to the low activity of miR-15b and miR21b. This study determined the gene expression profiles involved in SMAD protein signal transduction across five different types of breast cancer and identified the miRNAs potentially regulating their activity. Overexpression of SMAD3, SMAD4, and SMAD5 suggests excessive activation of the TGFβ pathway, potentially promoting tumor growth and development. Concurrently, a significant reduction in SMAD7 expression removes inhibitory control in the TGFβ pathway, a phenomenon that is particularly evident in more aggressive breast cancer types.
Collapse
Affiliation(s)
- Tomasz Sirek
- Department of Plastic and Reconstructive Surgery, Hospital for Minimally Invasive and Reconstructive Surgery in Bielsko-Biała, 43-316 Bielsko-Biala, Poland
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland
| | - Agata Sirek
- Department of Plastic and Reconstructive Surgery, Hospital for Minimally Invasive and Reconstructive Surgery in Bielsko-Biała, 43-316 Bielsko-Biala, Poland
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland
| | | | - Nikola Zmarzły
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland
| | - Joanna Sułkowska
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland
| | - Katarzyna Król-Jatręga
- Department of Plastic and Reconstructive Surgery, Hospital for Minimally Invasive and Reconstructive Surgery in Bielsko-Biała, 43-316 Bielsko-Biala, Poland
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland
| | - Marcin Opławski
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, 31-826 Kraków, Poland
- Department of Gynecology and Obstetrics, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski University in Cracow, 30-705 Kraków, Poland
| | - Dariusz Boroń
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, 31-826 Kraków, Poland
- Institute of Clinical Science, Skłodowska-Curie Medical University, 00-136 Warszawa, Poland
- Department of Gynecology and Obstetrics, TOMMED Specjalisci od Zdrowia, 40-662 Katowice, Poland
| | - Michał Chalcarz
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland
- Chalcarz Clinic-Aesthetic Surgery, Aesthetic Medicine, 60-001 Poznan, Poland
- Bieńkowski Medical Center-Plastic Surgery, 85-020 Bydgoszcz, Poland
| | - Piotr Ossowski
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland
| | - Konrad Dziobek
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland
| | - Damian Strojny
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland
- Institute of Health Care, National Academy of Applied Sciences in Przemyśl, 37-700 Przemyśl, Poland
- New Medical Techniques Specjalist Hospital of St. Family in Rudna Mała, 36-054 Rudna Mala, Poland
| | - Kacper Boroń
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland
| | - Dominika Janiszewska-Bil
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland
| | - Beniamin Oskar Grabarek
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland
- Department of Molecular, Biology Gyncentrum Fertility Clinic, 40-055 Katowice, Poland
| |
Collapse
|
5
|
Quenneville J, Feghaly A, Tual M, Thomas K, Major F, Gagnon E. Long-term severe hypoxia adaptation induces non-canonical EMT and a novel Wilms Tumor 1 (WT1) isoform. Cancer Gene Ther 2024; 31:1237-1250. [PMID: 38977895 PMCID: PMC11327107 DOI: 10.1038/s41417-024-00795-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 05/03/2024] [Accepted: 05/30/2024] [Indexed: 07/10/2024]
Abstract
The majority of cancer deaths are caused by solid tumors, where the four most prevalent cancers (breast, lung, colorectal and prostate) account for more than 60% of all cases (1). Tumor cell heterogeneity driven by variable cancer microenvironments, such as hypoxia, is a key determinant of therapeutic outcome. We developed a novel culture protocol, termed the Long-Term Hypoxia (LTHY) time course, to recapitulate the gradual development of severe hypoxia seen in vivo to mimic conditions observed in primary tumors. Cells subjected to LTHY underwent a non-canonical epithelial to mesenchymal transition (EMT) based on miRNA and mRNA signatures as well as displayed EMT-like morphological changes. Concomitant to this, we report production of a novel truncated isoform of WT1 transcription factor (tWt1), a non-canonical EMT driver, with expression driven by a yet undescribed intronic promoter through hypoxia-responsive elements (HREs). We further demonstrated that tWt1 initiates translation from an intron-derived start codon, retains proper subcellular localization and DNA binding. A similar tWt1 is also expressed in LTHY-cultured human cancer cell lines as well as primary cancers and predicts long-term patient survival. Our study not only demonstrates the importance of culture conditions that better mimic those observed in primary cancers, especially with regards to hypoxia, but also identifies a novel isoform of WT1 which correlates with poor long-term survival in ovarian cancer.
Collapse
Affiliation(s)
- Jordan Quenneville
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada.
- Department of Molecular Biology, Université de Montréal, Montréal, QC, Canada.
| | - Albert Feghaly
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Margaux Tual
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Department of Microbiology, Infectiology, and Immunology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Kiersten Thomas
- Department of Integrative Oncology, BC Cancer Research Center, Vancouver, BC, Canada
| | - François Major
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Department of Computer Science and Operations Research, Faculty of Arts and Sciences, Université de Montréal, Montréal, QC, Canada
| | - Etienne Gagnon
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada.
- Department of Microbiology, Infectiology, and Immunology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
6
|
Hassanie H, Penteado AB, de Almeida LC, Calil RL, da Silva Emery F, Costa-Lotufo LV, Trossini GHG. SETDB1 as a cancer target: challenges and perspectives in drug design. RSC Med Chem 2024; 15:1424-1451. [PMID: 38799223 PMCID: PMC11113007 DOI: 10.1039/d3md00366c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/16/2024] [Indexed: 05/29/2024] Open
Abstract
Genome stability is governed by chromatin structural dynamics, which modify DNA accessibility under the influence of intra- and inter-nucleosomal contacts, histone post-translational modifications (PTMs) and variations, besides the activity of ATP-dependent chromatin remodelers. These are the main ways by which chromatin dynamics are regulated and connected to nuclear processes, which when dysregulated can frequently be associated with most malignancies. Recently, functional crosstalk between histone modifications and chromatin remodeling has emerged as a critical regulatory method of transcriptional regulation during cell destiny choice. Therefore, improving therapeutic outcomes for patients by focusing on epigenetic targets dysregulated in malignancies should help prevent cancer cells from developing resistance to anticancer treatments. For this reason, SET domain bifurcated histone lysine methyltransferase 1 (SETDB1) has gained a lot of attention recently as a cancer target. SETDB1 is a histone lysine methyltransferase that plays an important role in marking euchromatic and heterochromatic regions. Hence, it promotes the silencing of tumor suppressor genes and contributes to carcinogenesis. Some studies revealed that SETDB1 was overexpressed in various human cancer types, which enhanced tumor growth and metastasis. Thus, SETDB1 appears to be an attractive epigenetic target for new cancer treatments. In this review, we have discussed the effects of its overexpression on the progression of tumors and the development of inhibitor drugs that specifically target this enzyme.
Collapse
Affiliation(s)
- Haifa Hassanie
- School of Pharmaceutical Sciences, University of São Paulo Brazil
| | | | | | | | - Flávio da Silva Emery
- School of Pharmaceutical Sciences of the Ribeirão Preto, University of São Paulo Brazil
| | | | | |
Collapse
|
7
|
Granados A, Zamperoni M, Rapone R, Moulin M, Boyarchuk E, Bouyioukos C, Del Maestro L, Joliot V, Negroni E, Mohamed M, Piquet S, Bigot A, Le Grand F, Albini S, Ait-Si-Ali S. SETDB1 modulates the TGFβ response in Duchenne muscular dystrophy myotubes. SCIENCE ADVANCES 2024; 10:eadj8042. [PMID: 38691608 PMCID: PMC11062573 DOI: 10.1126/sciadv.adj8042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 03/28/2024] [Indexed: 05/03/2024]
Abstract
Overactivation of the transforming growth factor-β (TGFβ) signaling in Duchenne muscular dystrophy (DMD) is a major hallmark of disease progression, leading to fibrosis and muscle dysfunction. Here, we investigated the role of SETDB1 (SET domain, bifurcated 1), a histone lysine methyltransferase involved in muscle differentiation. Our data show that, following TGFβ induction, SETDB1 accumulates in the nuclei of healthy myotubes while being already present in the nuclei of DMD myotubes where TGFβ signaling is constitutively activated. Transcriptomics revealed that depletion of SETDB1 in DMD myotubes leads to down-regulation of TGFβ target genes coding for secreted factors involved in extracellular matrix remodeling and inflammation. Consequently, SETDB1 silencing in DMD myotubes abrogates the deleterious effect of their secretome on myoblast differentiation by impairing myoblast pro-fibrotic response. Our findings indicate that SETDB1 potentiates the TGFβ-driven fibrotic response in DMD muscles, providing an additional axis for therapeutic intervention.
Collapse
Affiliation(s)
- Alice Granados
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Maeva Zamperoni
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Roberta Rapone
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Maryline Moulin
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Ekaterina Boyarchuk
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Costas Bouyioukos
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Laurence Del Maestro
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Véronique Joliot
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Elisa Negroni
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Myriame Mohamed
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Sandra Piquet
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Anne Bigot
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Fabien Le Grand
- Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, Institut NeuroMyoGène, Pathophysiology and Genetics of Neuron and Muscle (PGNM) Unit, 69008 Lyon, France
| | - Sonia Albini
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| | - Slimane Ait-Si-Ali
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, UMR7216, F-75013 Paris, France
| |
Collapse
|
8
|
Mitra S, Biswas P, Bandyopadhyay A, Gadekar VS, Gopalakrishnan AV, Kumar M, Radha, Nandy S. Piperlongumine: the amazing amide alkaloid from Piper in the treatment of breast cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2637-2650. [PMID: 37955690 DOI: 10.1007/s00210-023-02673-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/12/2023] [Indexed: 11/14/2023]
Abstract
Piperlongumine (PL), an alkaloid found primarily in the fruits and roots of the plant Piper longum L. (Piperaceae), is a natural compound that exhibits potent activity against various cancer cell proliferation. The most frequently caused malignancy in women globally, breast cancer (BC), has been demonstrated to be significantly inhibited by PL. Apoptosis, cell cycle arrest, increased ROS generation, and changes in the signalling protein's expression are all caused by the numerous signalling pathways that PL impacts. Since BC cells resist conventional chemotherapeutic drugs (doxorubicin, docetaxel etc.), researchers have shown that the drugs in combination with PL can exhibit a synergistic effect, greater than the effects of the drug or PL alone. Recently, techniques for drug packaging based on nanotechnology have been employed to improve PL release. The review has presented an outline of the chemistry of PL, its molecular basis in BC, its bioavailability, toxicity, and nanotechnological applications. An attempt to understand the future prospects and direction of research about the compound has also been discussed.
Collapse
Affiliation(s)
- Shatakshi Mitra
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Protha Biswas
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Anupriya Bandyopadhyay
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | | | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research On Cotton Technology, Mumbai, 400019, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, Himachal Pradesh, India
| | - Samapika Nandy
- Department of Botany, Vedanta College, 33A, Shiv Krishna Daw Lane, Phool Bagan, Kolkata, 700054, West Bengal, India.
- School of Pharmacy, Graphic Era Hill University, Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India.
| |
Collapse
|
9
|
Prashanth S, Radha Maniswami R, Rajajeyabalachandran G, Jegatheesan SK. SETDB1, an H3K9-specific methyltransferase: An attractive epigenetic target to combat cancer. Drug Discov Today 2024; 29:103982. [PMID: 38614159 DOI: 10.1016/j.drudis.2024.103982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
SET domain bifurcated histone lysine methyltransferase 1 (SETDB1) is an important epigenetic regulator catalyzing histone H3 lysine 9 (H3K9) methylation, specifically di-/tri-methylation. This regulation promotes gene silencing through heterochromatin formation. Aberrant SETDB1 expression, and its oncogenic role is evident in many cancers. Thus, SETDB1 is a valid target with novel therapeutic benefits. In this review, we explore the structural and biochemical features of SETDB1, its regulatory mechanisms, and its role in various cancers. We also discuss recent discoveries in small molecules targeting SETDB1 and provide suggestions for future research.
Collapse
Affiliation(s)
- Seema Prashanth
- Informatics, AI & ML, Jubilant Biosys Ltd., Bangalore, India
| | | | | | | |
Collapse
|
10
|
Yang W, Wei Y, Wang T, Xu Y, Jin X, Qian H, Yang S, He S. Cytoplasmic localization of SETDB1‑induced Warburg effect via c‑MYC‑LDHA axis enhances migration and invasion in breast carcinoma. Int J Mol Med 2024; 53:40. [PMID: 38426579 PMCID: PMC10914311 DOI: 10.3892/ijmm.2024.5364] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
SET domain bifurcated 1 (SETDB1), a pivotal histone lysine methyltransferase, is transported to the cytoplasm via a chromosome region maintenance 1 (CMR1)‑dependent pathway, contributing to non‑histone methylation. However, the function and underlying mechanism of cytoplasmic SETDB1 in breast cancer remain elusive. In the present study, immunohistochemistry revealed that elevated cytoplasmic SETDB1 was correlated with lymph node metastasis and more aggressive breast cancer subtypes. Functionally, wound healing and Transwell assays showed that cytoplasmic SETDB1 is key for cell migration and invasion, as well as induction of epithelial‑mesenchymal transition (EMT), which was reversed by leptomycin B (LMB, a CMR1 inhibitor) treatment. Furthermore, RNA‑seq and metabolite detection revealed that cytoplasmic SETDB1 was associated with metabolism pathway and elevated levels of metabolites involved in the Warburg effect, including glucose, pyruvate, lactate and ATP. Immunoblotting and reverse transcription‑quantitative PCR verified that elevation of cytoplasmic SETDB1 contributed to elevation of c‑MYC expression and subsequent upregulation of lactate dehydrogenase A (LDHA) expression. Notably, gain‑ and loss‑of‑function approaches revealed that LDHA overexpression in T47D cells enhanced migration and invasion by inducing EMT, while its depletion in SETDB1‑overexpressing MCF7 cells reversed SETDB1‑induced migration and invasion, as well as the Warburg effect and EMT. In conclusion, subcellular localization of cytoplasmic SETDB1 may be a pivotal factor in breast cancer progression. The present study offers valuable insight into the novel functions and mechanisms of cytoplasmic SETDB1.
Collapse
Affiliation(s)
- Wenlin Yang
- Department of Pathology, Nantong Tumor Hospital Affiliated to Nantong University, Nantong, Jiangsu 226006, P.R. China
| | - Yingze Wei
- Department of Pathology, Nantong Tumor Hospital Affiliated to Nantong University, Nantong, Jiangsu 226006, P.R. China
| | - Ting Wang
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Ying Xu
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Xiaoxia Jin
- Department of Pathology, Nantong Tumor Hospital Affiliated to Nantong University, Nantong, Jiangsu 226006, P.R. China
| | - Hongyan Qian
- Department of Pathology, Nantong Tumor Hospital Affiliated to Nantong University, Nantong, Jiangsu 226006, P.R. China
| | - Shuyun Yang
- Department of Pathology, Nantong Tumor Hospital Affiliated to Nantong University, Nantong, Jiangsu 226006, P.R. China
| | - Song He
- Department of Pathology, Nantong Tumor Hospital Affiliated to Nantong University, Nantong, Jiangsu 226006, P.R. China
| |
Collapse
|
11
|
Ma T, Xu F, Hou Y, Shu Y, Zhao Z, Zhang Y, Bai L, Feng L, Zhong L. SETDB1: Progress and prospects in cancer treatment potential and inhibitor research. Bioorg Chem 2024; 145:107219. [PMID: 38377821 DOI: 10.1016/j.bioorg.2024.107219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/03/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
SET domain bifurcated methyltransferase 1 (SETDB1) serves as a histone lysine methyltransferase, catalyzing the di- and tri-methylation of histone H3K9. Mounting evidence indicates that the abnormal expression or activity of SETDB1, either through amplification or mutation, plays a crucial role in tumorigenesis and progression. This is particularly evident in the context of tumor immune evasion and resistance to immune checkpoint blockade therapy. Furthermore, there is a robust association between SETDB1 dysregulation and an unfavorable prognosis across various types of tumors. The oncogenic role of SETDB1 primarily arises from its methyltransferase function, which contributes to the establishment of a condensed and transcriptionally inactive heterochromatin state. This results in the inactivation of genes that typically hinder cancer development and silencing of retrotransposons that could potentially trigger an immune response. These findings underscore the substantial potential for SETDB1 as an anti-tumor therapeutic target. Nevertheless, despite significant strides in recent years in tumor biology research, challenges persist in SETDB1-targeted therapy. To better facilitate the development of anti-tumor therapy targeting SETDB1, we have conducted a comprehensive review of SETDB1 in this account. We present the structure and function of SETDB1, its role in various tumors and immune regulation, as well as the advancements made in SETDB1 antagonists. Furthermore, we discuss the challenges encountered and provide perspectives for the development of SETDB1-targeted anti-tumor therapy.
Collapse
Affiliation(s)
- Tingnan Ma
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Feifei Xu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China; State Key Laboratory of Southwestern Chinese Medicine Resources; Key Laboratory of Standardization of Chinese Herbal Medicines of Ministry of Education, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yingying Hou
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Yongquan Shu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Zhipeng Zhao
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Yaru Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China.
| | - Lu Feng
- Department of Emergency, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610041, China.
| | - Lei Zhong
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China.
| |
Collapse
|
12
|
Luo F, Zhang M, Sun B, Xu C, Yang Y, Zhang Y, Li S, Chen G, Chen C, Li Y, Feng H. LINC00115 promotes chemoresistant breast cancer stem-like cell stemness and metastasis through SETDB1/PLK3/HIF1α signaling. Mol Cancer 2024; 23:60. [PMID: 38520019 PMCID: PMC10958889 DOI: 10.1186/s12943-024-01975-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/28/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Cancer stem-like cell is a key barrier for therapeutic resistance and metastasis in various cancers, including breast cancer, yet the underlying mechanisms are still elusive. Through a genome-wide lncRNA expression profiling, we identified that LINC00115 is robustly upregulated in chemoresistant breast cancer stem-like cells (BCSCs). METHODS LncRNA microarray assay was performed to document abundance changes of lncRNAs in paclitaxel (PTX)-resistant MDA-MB-231 BCSC (ALDH+) and non-BCSC (ALDH-). RNA pull-down and RNA immunoprecipitation (RIP) assays were performed to determine the binding proteins of LINC00115. The clinical significance of the LINC00115 pathway was examined in TNBC metastatic lymph node tissues. The biological function of LINC00115 was investigated through gain- and loss-of-function studies. The molecular mechanism was explored through RNA sequencing, mass spectrometry, and the CRISPR/Cas9-knockout system. The therapeutic potential of LINC00115 was examined through xenograft animal models. RESULTS LINC00115 functions as a scaffold lncRNA to link SETDB1 and PLK3, leading to enhanced SETDB1 methylation of PLK3 at both K106 and K200 in drug-resistant BCSC. PLK3 methylation decreases PLK3 phosphorylation of HIF1α and thereby increases HIF1α stability. HIF1α, in turn, upregulates ALKBH5 to reduce m6A modification of LINC00115, resulting in attenuated degradation of YTHDF2-dependent m6A-modified RNA and enhanced LINC00115 stability. Thus, this positive feedback loop provokes BCSC phenotypes and enhances chemoresistance and metastasis in triple-negative breast cancer. SETDB1 inhibitor TTD-IN with LINC00115 ASO sensitizes PTX-resistant cell response to chemotherapy in a xenograft animal model. Correlative expression of LINC00115, methylation PLK3, SETDB1, and HIF1α are prognostic for clinical triple-negative breast cancers. CONCLUSIONS Our findings uncover LINC00115 as a critical regulator of BCSC and highlight targeting LINC00115 and SETDB1 as a potential therapeutic strategy for chemotherapeutic resistant breast cancer.
Collapse
Affiliation(s)
- Fei Luo
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Mingda Zhang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Bowen Sun
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Chenxin Xu
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yi Yang
- Pediatric Translational Medicine Institute, Department of Hematology & Oncology, Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, 200127, China
| | - Yingwen Zhang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Shanshan Li
- Pediatric Translational Medicine Institute, Department of Hematology & Oncology, Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, 200127, China
| | - Guoyu Chen
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Ceshi Chen
- Academy of Biomedical Engineering, the Third Affiliated Hospital, Kunming Medical University, Kunming, 650500, China.
| | - Yanxin Li
- Pediatric Translational Medicine Institute, Department of Hematology & Oncology, Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, 200127, China.
| | - Haizhong Feng
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
13
|
Fracassi C, Ugge' M, Abdelhalim M, Zapparoli E, Simoni M, Magliulo D, Mazza D, Lazarevic D, Morelli M, Collas P, Bernardi R. PML modulates epigenetic composition of chromatin to regulate expression of pro-metastatic genes in triple-negative breast cancer. Nucleic Acids Res 2023; 51:11024-11039. [PMID: 37823593 PMCID: PMC10639071 DOI: 10.1093/nar/gkad819] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 09/04/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023] Open
Abstract
The promyelocytic leukemia (PML) protein organizes nuclear aggregates known as PML nuclear bodies (PML-NBs), where many transcription factors localize to be regulated. In addition, associations of PML and PML-NBs with chromatin are described in various cell types, further implicating PML in transcriptional regulation. However, a complete understanding of the functional consequences of PML association to DNA in cellular contexts where it promotes relevant phenotypes is still lacking. We examined PML chromatin association in triple-negative breast cancer (TNBC) cell lines, where it exerts important oncogenic functions. We find that PML associates discontinuously with large heterochromatic PML-associated domains (PADs) that contain discrete gene-rich euchromatic sub-domains locally depleted of PML. PML promotes heterochromatic organization in PADs and expression of pro-metastatic genes embedded in these sub-domains. Importantly, this occurs outside PML-NBs, suggesting that nucleoplasmic PML exerts a relevant gene regulatory function. We also find that PML plays indirect regulatory roles in TNBC cells by promoting the expression of pro-metastatic genes outside PADs. Our findings suggest that PML is an important transcriptional regulator of pro-oncogenic metagenes in TNBC cells, via transcriptional regulation and epigenetic organization of heterochromatin domains that embed regions of local transcriptional activity.
Collapse
Affiliation(s)
- Cristina Fracassi
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Martina Ugge'
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Mohamed Abdelhalim
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ettore Zapparoli
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Matilde Simoni
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Daniela Magliulo
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Davide Mazza
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Dejan Lazarevic
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Marco J Morelli
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | - Rosa Bernardi
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
14
|
Park S, Cho JH, Kim JH, Park M, Park S, Kim SY, Kim SK, Kim K, Park S, Park B, Moon J, Lee G, Kim S, Kim JA, Kim JH. Hypoxia stabilizes SETDB1 to maintain genome stability. Nucleic Acids Res 2023; 51:11178-11196. [PMID: 37850636 PMCID: PMC10639076 DOI: 10.1093/nar/gkad796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 08/17/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023] Open
Abstract
Von Hippel-Lindau (VHL) is a tumor suppressor that functions as the substrate recognition subunit of the CRL2VHL E3 complex. While substrates of VHL have been identified, its tumor suppressive role remains to be fully understood. For further determination of VHL substrates, we analyzed the physical interactome of VHL and identified the histone H3K9 methyltransferase SETBD1 as a novel target. SETDB1 undergoes oxygen-dependent hydroxylation by prolyl hydroxylase domain proteins and the CRL2VHL complex recognizes hydroxylated SETDB1 for ubiquitin-mediated degradation. Under hypoxic conditions, SETDB1 accumulates by escaping CRL2VHL activity. Loss of SETDB1 in hypoxia compared with that in normoxia escalates the production of transposable element-derived double-stranded RNAs, thereby hyperactivating the immune-inflammatory response. In addition, strong derepression of TEs in hypoxic cells lacking SETDB1 triggers DNA damage-induced death. Our collective results support a molecular mechanism of oxygen-dependent SETDB1 degradation by the CRL2VHL E3 complex and reveal a role of SETDB1 in genome stability under hypoxia.
Collapse
Affiliation(s)
- Sungryul Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jin Hwa Cho
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jong-Hwan Kim
- Korea Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Mijin Park
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Seulki Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Seon-Young Kim
- Korea Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Seon-Kyu Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Kidae Kim
- R&D Center, PharmAbcine Inc., Daejeon 34047, Republic of Korea
| | - Sung Goo Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Byoung Chul Park
- Department of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jeong Hee Moon
- Core Research Facility & Analysis Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Gaseul Lee
- Core Research Facility & Analysis Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28160, Republic of Korea
| | - Sunhong Kim
- Drug Discovery Center, LG Chem Ltd., Seoul 07796, Republic of Korea
| | - Jung-Ae Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jeong-Hoon Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
15
|
Kumar B, Chaujar R. Fin field-effect-transistor engineered sensor for detection of MDA-MB-231 breast cancer cells: A switching-ratio-based sensitivity analysis. Phys Rev E 2023; 108:034408. [PMID: 37849201 DOI: 10.1103/physreve.108.034408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/01/2023] [Indexed: 10/19/2023]
Abstract
The present study describes the utilization of a gallium-arsenide gate-stack gate-all-around (GaAs-GS-GAA) fin field-effect transistor (FinFET) to accomplish the electrical identification of the breast cancer cell MDA-MB-231 by monitoring the device switching ratio. The proposed sensor uses four nanocavities carved beneath the gate electrodes for enhanced detection sensitivity. MDA-MB-231 (cancerous) and MCF-10A (healthy) breast cells have a distinct dielectric constant, and it changes when exposed to microwave frequencies spanning across 200 MHz and 13.6 GHz, which modifies the electrical characteristics, allowing for early diagnosis. First, a percentage shift in the primary DC characteristics is presented to demonstrate the advantage of GS-GAA FinFET over conventional FinFET. The sensor measures the switching-ratio-based sensitivity, which comes out to be 99.72% for MDA-MB-231 and 47.78% for MCF-10A. The sensor was tested for stability and reproducibility and found to be repeatable and sufficiently stable with settling times of 55.51, 60.80, and 71.58 ps for MDA-MB-231 cells, MCF-10A cells, and air, respectively. It can distinguish between viable and nonviable cells based on electrical response alterations. The possibility of early detection of cancerous breast cells using Bruggeman's model is also discussed. Further, the impact of biomolecule occupancy and frequency variations on the device sensitivity is carried out. This study also explains how to maximize the sensing performance by adjusting the fin height, fin width, work function, channel doping, temperature, and drain voltage. Lastly, this article compared the proposed breast cancer cell detectors to existing literature to evaluate their performance and found considerable improvement. The findings of this research have the potential to establish GaAs-GS-GAA FinFET as a promising contender for MDA-MB-231 breast cancer cell detection.
Collapse
Affiliation(s)
- Bhavya Kumar
- Department of Applied Physics, Delhi Technological University, Delhi 110042, India
| | - Rishu Chaujar
- Department of Applied Physics, Delhi Technological University, Delhi 110042, India
| |
Collapse
|
16
|
Wang Q, Xiong F, Wu G, Wang D, Liu W, Chen J, Qi Y, Wang B, Chen Y. SMAD Proteins in TGF-β Signalling Pathway in Cancer: Regulatory Mechanisms and Clinical Applications. Diagnostics (Basel) 2023; 13:2769. [PMID: 37685308 PMCID: PMC10487229 DOI: 10.3390/diagnostics13172769] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Suppressor of mother against decapentaplegic (SMAD) family proteins are central to one of the most versatile cytokine signalling pathways in metazoan biology, the transforming growth factor-β (TGF-β) pathway. The TGF-β pathway is widely known for its dual role in cancer progression as both an inhibitor of tumour cell growth and an inducer of tumour metastasis. This is mainly mediated through SMAD proteins and their cofactors or regulators. SMAD proteins act as transcription factors, regulating the transcription of a wide range of genes, and their rich post-translational modifications are influenced by a variety of regulators and cofactors. The complex role, mechanisms, and important functions of SMAD proteins in tumours are the hot topics in current oncology research. In this paper, we summarize the recent progress on the effects and mechanisms of SMAD proteins on tumour development, diagnosis, treatment and prognosis, and provide clues for subsequent research on SMAD proteins in tumours.
Collapse
Affiliation(s)
- Qi Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Fei Xiong
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Guanhua Wu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Da Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Wenzheng Liu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Junsheng Chen
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Yongqiang Qi
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China;
| | - Bing Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Yongjun Chen
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| |
Collapse
|
17
|
Kim K, Ryu TY, Jung E, Han TS, Lee J, Kim SK, Roh YN, Lee MS, Jung CR, Lim JH, Hamamoto R, Lee HW, Hur K, Son MY, Kim DS, Cho HS. Epigenetic regulation of SMAD3 by histone methyltransferase SMYD2 promotes lung cancer metastasis. Exp Mol Med 2023:10.1038/s12276-023-00987-1. [PMID: 37121971 DOI: 10.1038/s12276-023-00987-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/20/2022] [Accepted: 02/07/2023] [Indexed: 05/02/2023] Open
Abstract
Epigenetic alterations, especially histone methylation, are key factors in cell migration and invasion in cancer metastasis. However, in lung cancer metastasis, the mechanism by which histone methylation regulates metastasis has not been fully elucidated. Here, we found that the histone methyltransferase SMYD2 is overexpressed in lung cancer and that knockdown of SMYD2 could reduce the rates of cell migration and invasion in lung cancer cell lines via direct downregulation of SMAD3 via SMYD2-mediated epigenetic regulation. Furthermore, using an in vitro epithelial-mesenchymal transition (EMT) system with a Transwell system, we generated highly invasive H1299 (In-H1299) cell lines and observed the suppression of metastatic features by SMYD2 knockdown. Finally, two types of in vivo studies revealed that the formation of metastatic tumors by shSMYD2 was significantly suppressed. Thus, we suggest that SMYD2 is a potential metastasis regulator and that the development of SMYD2-specific inhibitors may help to increase the efficacy of lung cancer treatment.
Collapse
Affiliation(s)
- Kwangho Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Tae Young Ryu
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Eunsun Jung
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Tae-Su Han
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
- Department of Biological Science, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jinkwon Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Seon-Kyu Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Yu Na Roh
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Moo-Seung Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Cho-Rok Jung
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Jung Hwa Lim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Ryuji Hamamoto
- Division of Molecular Modification and Cancer Biology, National Cancer Center, Tokyo, Japan
| | - Hye Won Lee
- Department of Pathology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Keun Hur
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| | - Mi-Young Son
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea.
- Department of Biological Science, Sungkyunkwan University, Suwon, Republic of Korea.
| | - Dae-Soo Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea.
| | - Hyun-Soo Cho
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Republic of Korea.
- Department of Biological Science, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
18
|
Hu L, Cheng Z, Wu L, Luo L, Pan P, Li S, Jia Q, Yang N, Xu B. Histone methyltransferase SETDB1 promotes osteogenic differentiation in osteoporosis by activating OTX2-mediated BMP-Smad and Wnt/β-catenin pathways. Hum Cell 2023:10.1007/s13577-023-00902-w. [PMID: 37074626 DOI: 10.1007/s13577-023-00902-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/24/2023] [Indexed: 04/20/2023]
Abstract
Osteogenic differentiation plays important roles in the pathogenesis of osteoporosis. In this study, we explored the regulatory mechanism of histone methyltransferase SET domain bifurcated 1 (SETDB1) underlying the osteogenic differentiation in osteoporosis. The common osteoporosis-related genes were retrieved from the GeneCards, CTD, and Phenolyzer databases. The enrichment analysis was conducted on the candidate osteoporosis-related genes using the PANTHER software, and the binding site between transcription factors and target genes predicted by hTFtarget. The bioinformatics analyses suggested 6 osteoporosis-related chromatin/chromatin binding protein or regulatory proteins (HDAC4, SIRT1, SETDB1, MECP2, CHD7, and DKC1). Normal and osteoporosis tissues were collected from osteoporosis patients to examine the expression of SETDB1. It was found that SETDB1 was poorly expressed in osteoporotic femoral tissues, indicating that SETDB1 might be involved in the development of osteoporosis. We induced SETDB1 overexpression/knockdown, orthodenticle homeobox 2 (OTX2) overexpression, activation of Wnt/β-catenin or BMP-Smad pathways alone or in combination in osteoblasts or ovariectomized mice. The data indicated that SETDB1 methylation regulated H3K9me3 in the OTX2 promoter region and inhibited the expression of OTX2. Besides, the BMP-Smad and Wnt/β-catenin pathways were inhibited by OTX2, thereby resulting in inhibited osteogenic differentiation. Animal experiments showed that overexpressed SETDB1 could promote the increase of calcium level and differentiation of femoral tissues. In conclusion, upregulation of SETDB1 promotes osteogenic differentiation by inhibiting OTX2 and activating the BMP-Smad and Wnt/β-catenin pathways in osteoporosis.
Collapse
Affiliation(s)
- Lianying Hu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui Province, People's Republic of China
| | - Zhen Cheng
- Clinical Laboratory, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, People's Republic of China
| | - Lunan Wu
- Department of Anesthesiology and Perioperative Medicine, The Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, The Second Hospital of Anhui Medical University, Hefei, 230601, People's Republic of China
| | - Liangliang Luo
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui Province, People's Republic of China
| | - Ping Pan
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui Province, People's Republic of China
| | - Shujin Li
- Clinical Laboratory, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, People's Republic of China
| | - Qiyu Jia
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui Province, People's Republic of China.
| | - Ning Yang
- Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui Province, People's Republic of China.
| | - Bin Xu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
| |
Collapse
|
19
|
Klonou A, Korkolopoulou P, Giannopoulou AI, Kanakoglou DS, Pampalou A, Gargalionis AN, Sarantis P, Mitsios A, Sgouros S, Papavassiliou AG, Piperi C. Histone H3K9 methyltransferase SETDB1 overexpression correlates with pediatric high-grade gliomas progression and prognosis. J Mol Med (Berl) 2023; 101:387-401. [PMID: 36811655 DOI: 10.1007/s00109-023-02294-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/12/2023] [Accepted: 02/02/2023] [Indexed: 02/24/2023]
Abstract
Pediatric high-grade gliomas (pHGGs) are heterogeneous, diffuse, and highly infiltrative tumors with dismal prognosis. Aberrant post-translational histone modifications with elevated histone 3 lysine trimethylation (H3K9me3) have been recently implicated in pHGGs' pathology, conferring to tumor heterogeneity. The present study investigates the potential involvement of H3K9me3 methyltransferase SETDB1 in the cellular function, progression, and clinical significance of pHGG. The bioinformatic analysis detected SETDB1 enrichment in pediatric gliomas compared to the normal brain, as well as positive and negative correlations with a proneural and mesenchymal signature, respectively. In our cohort of pHGGs, SETDB1 expression was significantly increased compared to pLGG and normal brain tissue and correlated with p53 expression, as well as reduced patients' survival. In accordance, H3K9me3 levels were also elevated in pHGG compared to the normal brain and were associated with worse patient survival. Gene silencing of SETDB1 in two patient-derived pHGG cell lines showed a significant reduction in cell viability followed by reduced cell proliferation and increased apoptosis. SETDB1 silencing further reduced cell migration of pHGG cells and the expression of the mesenchymal markers N-cadherin and vimentin. mRNA analysis of epithelial-mesenchymal transition (EMT) markers upon SETDB1 silencing showed a reduction in SNAI1 levels and downregulation of CDH2 along with the EMT regulator gene MARCKS. In addition, SETDB1 silencing significantly increased the bivalent tumor suppressor gene SLC17A7 mRNA levels in both cell lines, indicating its implication in the oncogenic process.Altogether, our findings demonstrate a predominant oncogenic role of SETDB1 in pHGG which along with elevated H3K9me3 levels correlate significantly to tumor progression and inferior patients' survival. There is evidence that targeting SETDB1 may effectively inhibit pHGG progression, providing a novel insight into the therapeutic strategies for pediatric gliomas. KEY MESSAGES: SETDB1 gene expression is enriched in pHGG compared to normal brain. SETDB1 expression is increased in pHGG tissues and associates with reduced patients' survival. Gene silencing of SETDB1 reduces cell viability and migration. SETDB1 silencing affects mesenchymal markers expression. SETDB1 silencing upregulates SLC17A7 levels. SETDB1 has an oncogenic role in pHGG.
Collapse
Affiliation(s)
- Alexia Klonou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street - Bldg 16, 11527, Athens, Greece
| | - Penelope Korkolopoulou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Angeliki-Ioanna Giannopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street - Bldg 16, 11527, Athens, Greece
| | - Dimitrios S Kanakoglou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Andromachi Pampalou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Antonios N Gargalionis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street - Bldg 16, 11527, Athens, Greece
| | - Panagiotis Sarantis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street - Bldg 16, 11527, Athens, Greece
| | - Andreas Mitsios
- Department of Pediatric Neurosurgery, IASO Children's Hospital, National and Kapodistrian University of Athens, 15123, Athens, Greece
| | - Spyros Sgouros
- Department of Pediatric Neurosurgery, IASO Children's Hospital, National and Kapodistrian University of Athens, 15123, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street - Bldg 16, 11527, Athens, Greece.
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street - Bldg 16, 11527, Athens, Greece.
| |
Collapse
|
20
|
Ali S, Rehman MU, Yatoo AM, Arafah A, Khan A, Rashid S, Majid S, Ali A, Ali MN. TGF-β signaling pathway: Therapeutic targeting and potential for anti-cancer immunity. Eur J Pharmacol 2023; 947:175678. [PMID: 36990262 DOI: 10.1016/j.ejphar.2023.175678] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/07/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Transforming growth factor-β (TGFβ) is a pleiotropic secretory cytokine exhibiting both cancer-inhibitory and promoting properties. It transmits its signals via Suppressor of Mother against Decapentaplegic (SMAD) and non-SMAD pathways and regulates cell proliferation, differentiation, invasion, migration, and apoptosis. In non-cancer and early-stage cancer cells, TGFβ signaling suppresses cancer progression via inducing apoptosis, cell cycle arrest, or anti-proliferation, and promoting cell differentiation. On the other hand, TGFβ may also act as an oncogene in advanced stages of tumors, wherein it develops immune-suppressive tumor microenvironments and induces the proliferation of cancer cells, invasion, angiogenesis, tumorigenesis, and metastasis. Higher TGFβ expression leads to the instigation and development of cancer. Therefore, suppressing TGFβ signals may present a potential treatment option for inhibiting tumorigenesis and metastasis. Different inhibitory molecules, including ligand traps, anti-sense oligo-nucleotides, small molecule receptor-kinase inhibitors, small molecule inhibitors, and vaccines, have been developed and clinically trialed for blocking the TGFβ signaling pathway. These molecules are not pro-oncogenic response-specific but block all signaling effects induced by TGFβ. Nonetheless, targeting the activation of TGFβ signaling with maximized specificity and minimized toxicity can enhance the efficacy of therapeutic approaches against this signaling pathway. The molecules that are used to target TGFβ are non-cytotoxic to cancer cells but designed to curtail the over-activation of invasion and metastasis driving TGFβ signaling in stromal and cancer cells. Here, we discussed the critical role of TGFβ in tumorigenesis, and metastasis, as well as the outcome and the promising achievement of TGFβ inhibitory molecules in the treatment of cancer.
Collapse
|
21
|
Meng X, Xiao W, Sun J, Li W, Yuan H, Yu T, Zhang X, Dong W. CircPTK2/PABPC1/SETDB1 axis promotes EMT-mediated tumor metastasis and gemcitabine resistance in bladder cancer. Cancer Lett 2023; 554:216023. [PMID: 36436682 DOI: 10.1016/j.canlet.2022.216023] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/01/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Bladder cancer (BCa), characterized by high invasion, metastasis, recurrence, and chemoresistance, is one of the most prevalent urologic malignant tumors. Recent studies have highlighted the potential impact of the circRNAs-protein complex in tumorigenesis. However, the mechanisms by which the circRNAs-protein complex regulates BCa metastasis and chemoresistance remain elusive. Herein, we identified an upregulated circRNA, circPTK2, which could regulate SETDB1 expression by analyzing the transcriptome by RNA-sequencing. Importantly, using circRNA pulldown assay and RNA-binding protein immunoprecipitation, we identified PABPC1 as a robust novel interacting protein of circPTK2. Mechanistically, circPTK2 could bind to PABPC1 and enhance its ability to stabilize SETDB1 mRNA, thereby specifically promoting SETDB1 expression and facilitating SETDB1-mediated epithelial-mesenchymal transition (EMT). Functionally, overexpression of the circPTK2-SETDB1 axis markedly promoted migration, invasion, and gemcitabine resistance in vitro and enhanced lymph node metastasis in vivo. Collectively, our findings clarified a hitherto unexplored mechanism of the circPTK2/PABPC1/SETDB1 axis in EMT-mediated tumor metastasis and gemcitabine resistance in BCa.
Collapse
Affiliation(s)
- Xiangui Meng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wen Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiayin Sun
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weiquan Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hongwei Yuan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tiexi Yu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Wei Dong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China; Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
22
|
Ding JT, Yu XT, He JH, Chen DZ, Guo F. A Pan-Cancer Analysis Revealing the Dual Roles of Lysine (K)-Specific Demethylase 6B in Tumorigenesis and Immunity. Front Genet 2022; 13:912003. [PMID: 35783266 PMCID: PMC9246050 DOI: 10.3389/fgene.2022.912003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: Epigenetic-targeted therapy has been increasingly applied in the treatment of cancers. Lysine (K)-specific demethylase 6B (KDM6B) is an epigenetic enzyme involved in the coordinated control between cellular intrinsic regulators and the tissue microenvironment whereas the pan-cancer analysis of KDM6B remains unavailable. Methods: The dual role of KDM6B in 33 cancers was investigated based on the GEO (Gene Expression Omnibus) and TCGA (The Cancer Genome Atlas) databases. TIMER2 and GEPIA2 were applied to investigate the KDM6B levels in different subtypes or stages of tumors. Besides, the Human Protein Atlas database allowed us to conduct a pan-cancer study of the KDM6B protein levels. GEPIA2 and Kaplan–Meier plotter were used for the prognosis analysis in different cancers. Characterization of genetic modifications of the KDM6B gene was analyzed by the cBioPortal. DNA methylation levels of different KDM6B probes in different TCGA tumors were analyzed by MEXPRESS. TIMER2 was applied to determine the association of the KDM6B expression and immune infiltration and DNA methyltransferases. Spearman correlation analysis was used to assess the association of the KDM6B expression with TMB (tumor mutation burden) and MSI (microsatellite instability). The KEGG (Kyoto encyclopedia of genes and genomes) pathway analysis and GO (Gene ontology) enrichment analysis were used to further investigate the potential mechanism of KDM6B in tumor pathophysiology. Results: KDM6B was downregulated in 11 cancer types and upregulated across five types. In KIRC (kidney renal clear cell carcinoma) and OV (ovarian serous cystadenocarcinoma), the KDM6B level was significantly associated with the pathological stage. A high level of KDM6B was related to poor OS (overall survival) outcomes for THCA (thyroid carcinoma), while a low level was correlated with poor OS and DFS (disease-free survival) prognosis of KIRC. The KDM6B expression level was associated with TMB, MSI, and immune cell infiltration, particularly cancer-associated fibroblasts, across various cancer types with different correlations. Furthermore, the enrichment analysis revealed the relationship between H3K4 and H3K27 methylation and KDM6B function. Conclusion: Dysregulation of the DNA methyltransferase activity and methylation levels of H3K4 and H3K27 may involve in the dual role of KDM6B in tumorigenesis and development. Our study offered a relatively comprehensive understanding of KDM6B’s dual role in cancer development and response to immunotherapy.
Collapse
Affiliation(s)
- Jia-Tong Ding
- Ningbo Institute for Medicine & Biomedical Engineering Combined Innovation, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, China
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Xiao-Ting Yu
- Burn Research Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jin-Hao He
- Burn Research Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - De-Zhi Chen
- Burn Research Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fei Guo
- Ningbo Institute for Medicine & Biomedical Engineering Combined Innovation, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, China
- Burn Research Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Fei Guo,
| |
Collapse
|
23
|
Ryu TY, Kim K, Han TS, Lee MO, Lee J, Choi J, Jung KB, Jeong EJ, An DM, Jung CR, Lim JH, Jung J, Park K, Lee MS, Kim MY, Oh SJ, Hur K, Hamamoto R, Park DS, Kim DS, Son MY, Cho HS. Human gut-microbiome-derived propionate coordinates proteasomal degradation via HECTD2 upregulation to target EHMT2 in colorectal cancer. THE ISME JOURNAL 2022; 16:1205-1221. [PMID: 34972816 PMCID: PMC9038766 DOI: 10.1038/s41396-021-01119-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022]
Abstract
The human microbiome plays an essential role in the human immune system, food digestion, and protection from harmful bacteria by colonizing the human intestine. Recently, although the human microbiome affects colorectal cancer (CRC) treatment, the mode of action between the microbiome and CRC remains unclear. This study showed that propionate suppressed CRC growth by promoting the proteasomal degradation of euchromatic histone-lysine N-methyltransferase 2 (EHMT2) through HECT domain E3 ubiquitin protein ligase 2 (HECTD2) upregulation. In addition, EHMT2 downregulation reduced the H3K9me2 level on the promoter region of tumor necrosis factor α-induced protein 1 (TNFAIP1) as a novel direct target of EHMT2. Subsequently, TNFAIP1 upregulation induced the apoptosis of CRC cells. Furthermore, using Bacteroides thetaiotaomicron culture medium, we confirmed EHMT2 downregulation via upregulation of HECTD2 and TNFAIP1 upregulation. Finally, we observed the synergistic effect of propionate and an EHMT2 inhibitor (BIX01294) in 3D spheroid culture models. Thus, we suggest the anticancer effects of propionate and EHMT2 as therapeutic targets for colon cancer treatment and may provide the possibility for the synergistic effects of an EHMT2 inhibitor and microbiome in CRC treatment.
Collapse
Affiliation(s)
- Tae Young Ryu
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.,Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kwangho Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Tae-Su Han
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Mi-Ok Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.,Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Jinkwon Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.,Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Jinhyeon Choi
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Kwang Bo Jung
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Eun-Jeong Jeong
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Da Mi An
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Cho-Rok Jung
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.,Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Jung Hwa Lim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Jaeeun Jung
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Kunhyang Park
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Moo-Seung Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.,Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Mi-Young Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Soo Jin Oh
- Asan Institute for Life Sciences, Asan Medical Center and Department of Convergence Medicine, College of Medicine, University of Ulsan, Seoul, 05505, Republic of Korea
| | - Keun Hur
- Department of Biochemistry and Cell biology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Ryuji Hamamoto
- Division of Molecular Modification and Cancer Biology, National Cancer Center, Tokyo, 104-0045, Japan
| | - Doo-Sang Park
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea. .,Korea University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Dae-Soo Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea. .,Korea University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Mi-Young Son
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea. .,Korea University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Hyun-Soo Cho
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea. .,Korea University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
24
|
Liu Z, Liu J, Ebrahimi B, Pratap UP, He Y, Altwegg KA, Tang W, Li X, Lai Z, Chen Y, Shen L, Sareddy GR, Viswanadhapalli S, Tekmal RR, Rao MK, Vadlamudi RK. SETDB1 interactions with PELP1 contributes to breast cancer endocrine therapy resistance. Breast Cancer Res 2022; 24:26. [PMID: 35395812 PMCID: PMC8991965 DOI: 10.1186/s13058-022-01520-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/17/2022] [Indexed: 11/28/2022] Open
Abstract
Background Methyltransferase SETDB1 is highly expressed in breast cancer (BC), however, the mechanisms by which SETDB1 promotes BC progression to endocrine therapy resistance remains elusive. In this study, we examined the mechanisms by which SETDB1 contribute to BC endocrine therapy resistance. Methods We utilized therapy sensitive (MCF7 and ZR75), therapy resistant (MCF7-TamR, MCF7-FR, MCF7-PELP1cyto, MCF7-SETDB1) estrogen receptor alpha positive (ER+)BC models and conducted in vitro cell viability, colony formation, 3-dimensional cell growth assays to investigate the role of SETDB1 in endocrine resistance. RNA-seq of parental and SETDB1 knock down ER+ BC cells was used to identify unique pathways. SETDB1 interaction with PELP1 was identified by yeast-two hybrid screen and confirmed by immunoprecipitation and GST-pull down assays. Mechanistic studies were conducted using Western blotting, reporter gene assays, RT-qPCR, and in vitro methylation assays. Xenograft assays were used to establish the role of PELP1 in SETDB1 mediated BC progression. Results RNA-seq analyses showed that SETDB1 regulates expression of a subset of estrogen receptor (ER) and Akt target genes that contribute to endocrine therapy resistance. Importantly, using yeast-two hybrid screen, we identified ER coregulator PELP1 as a novel interacting protein of SETDB1. Biochemical analyses confirmed SETDB1 and PELP1 interactions in multiple BC cells. Mechanistic studies confirmed that PELP1 is necessary for SETDB1 mediated Akt methylation and phosphorylation. Further, SETDB1 overexpression promotes tamoxifen resistance in BC cells, and PELP1 knockdown abolished these effects. Using xenograft model, we provided genetic evidence that PELP1 is essential for SETDB1 mediated BC progression in vivo. Analyses of TCGA datasets revealed SETDB1 expression is positively correlated with PELP1 expression in ER+ BC patients. Conclusions This study suggests that the PELP1/SETDB1 axis play an important role in aberrant Akt activation and serves as a novel target for treating endocrine therapy resistance in breast cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-022-01520-4.
Collapse
Affiliation(s)
- Zexuan Liu
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7836, San Antonio, TX, 78229-3900, USA.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Junhao Liu
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7836, San Antonio, TX, 78229-3900, USA.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Behnam Ebrahimi
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7836, San Antonio, TX, 78229-3900, USA
| | - Uday P Pratap
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7836, San Antonio, TX, 78229-3900, USA
| | - Yi He
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7836, San Antonio, TX, 78229-3900, USA.,Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Kristin A Altwegg
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7836, San Antonio, TX, 78229-3900, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Weiwei Tang
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7836, San Antonio, TX, 78229-3900, USA.,Department of Obstetrics and Gynecology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, People's Republic of China
| | - Xiaonan Li
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7836, San Antonio, TX, 78229-3900, USA
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.,Dept of Population Health Sciences, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Gangadhara R Sareddy
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7836, San Antonio, TX, 78229-3900, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Suryavathi Viswanadhapalli
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7836, San Antonio, TX, 78229-3900, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Rajeshwar R Tekmal
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7836, San Antonio, TX, 78229-3900, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Manjeet K Rao
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Ratna K Vadlamudi
- Division of Reproductive Research, Department of Obstetrics and Gynecology, University of Texas Health San Antonio, 7703 Floyd Curl Drive, Mail Code 7836, San Antonio, TX, 78229-3900, USA. .,Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA. .,Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
| |
Collapse
|
25
|
Firoozi Z, Mohammadisoleimani E, Shahi A, Mansoori H, Naghizadeh MM, Bastami M, Nariman‐Saleh‐Fam Z, Daraei A, Raoofat A, Mansoori Y. Potential roles of hsa_circ_000839 and hsa_circ_0005986 in breast cancer. J Clin Lab Anal 2022; 36:e24263. [PMID: 35098570 PMCID: PMC8906031 DOI: 10.1002/jcla.24263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/27/2021] [Accepted: 01/15/2022] [Indexed: 11/26/2022] Open
Abstract
Background Breast cancer (BC) is one of the leading causes of death among women around the world. Circular RNAs (circRNAs) are a newly discovered group of non‐coding RNAs that their roles are being investigated in BC and other cancer types. In this study, we evaluated the association of hsa_circ_0005986 and hsa_circ_000839 in tumor and adjacent normal tissues of BC patients with their clinicopathological characteristics. Materials and methods Total RNA was extracted from tumors and adjacent non‐tumor tissues by the Trizol isolation reagent, and cDNA was synthesized using First Strand cDNA Synthesis Kit (Thermo Scientific). The expression level of hsa_circ_0005986 and hsa_circ_000839 was quantified using RT‐qPCR. Online in silico tools were used for identifying potentially important competing endogenous RNA (ceRNA) networks of these two circRNAs. Results The expression level of hsa_circ_0005986 and hsa_circ_000839 was lower in the tumor as compared to adjacent tissues. The expression level of hsa_circ_0005986 in the patients who had used hair dye in the last 5 years was significantly lower. Moreover, a statistically significant negative correlation between body mass index (BMI) and hsa_circ_000839 expression was observed. In silico analysis of the ceRNA network of these circRNAs revealed mRNAs and miRNAs with crucial roles in BC. Conclusion Downregulation of hsa_circ_000839 and hsa_circ_0005986 in BC tumors suggests a tumor‐suppressive role for these circRNAs in BC, meriting the need for more experimentations to delineate the exact mechanism of their involvement in BC pathogenesis.
Collapse
Affiliation(s)
- Zahra Firoozi
- Department of Medical Genetics Fasa University of Medical Sciences Fasa Iran
| | | | - Abbas Shahi
- Department of Immunology School of Medicine Tehran University of Medical Science Tehran Iran
- Noncommunicable Diseases Research CenterFasa University of Medical Sciences Fasa Iran
| | - Hosein Mansoori
- Department of Medical Genetics Fasa University of Medical Sciences Fasa Iran
| | | | - Milad Bastami
- Noncommunicable Diseases Research CenterFasa University of Medical Sciences Fasa Iran
| | - Ziba Nariman‐Saleh‐Fam
- Women's Reproductive Health Research CenterTabriz University of Medical Sciences Tabriz Iran
| | - Abdolreza Daraei
- Department of Medical Genetics School of Medicine Babol University of Medical Sciences Babol Iran
| | - Atefeh Raoofat
- Department of Medical Genetics School of Medicine Shiraz University of Medical Sciences Shiraz Iran
| | - Yaser Mansoori
- Department of Medical Genetics Fasa University of Medical Sciences Fasa Iran
- Noncommunicable Diseases Research CenterFasa University of Medical Sciences Fasa Iran
| |
Collapse
|
26
|
Markouli M, Strepkos D, Piperi C. Structure, Activity and Function of the SETDB1 Protein Methyltransferase. Life (Basel) 2021; 11:life11080817. [PMID: 34440561 PMCID: PMC8397983 DOI: 10.3390/life11080817] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
The SET Domain Bifurcated Histone Lysine Methyltransferase 1 (SETDB1) is a prominent member of the Suppressor of Variegation 3–9 (SUV39)-related protein lysine methyltransferases (PKMTs), comprising three isoforms that differ in length and domain composition. SETDB1 is widely expressed in human tissues, methylating Histone 3 lysine 9 (H3K9) residues, promoting chromatin compaction and exerting negative regulation on gene expression. SETDB1 has a central role in normal physiology and nervous system development, having been implicated in the regulation of cell cycle progression, inactivation of the X chromosome, immune cells function, expression of retroelements and formation of promyelocytic leukemia (PML) nuclear bodies (NB). SETDB1 has been frequently deregulated in carcinogenesis, being implicated in the pathogenesis of gliomas, melanomas, as well as in lung, breast, gastrointestinal and ovarian tumors, where it mainly exerts an oncogenic role. Aberrant activity of SETDB1 has also been implicated in several neuropsychiatric, cardiovascular and gastrointestinal diseases, including schizophrenia, Huntington’s disease, congenital heart defects and inflammatory bowel disease. Herein, we provide an update on the unique structural and biochemical features of SETDB1 that contribute to its regulation, as well as its molecular and cellular impact in normal physiology and disease with potential therapeutic options.
Collapse
|
27
|
Trager MH, Sah B, Chen Z, Liu L. Control of Breast Cancer Pathogenesis by Histone Methylation and the Hairless Histone Demethylase. Endocrinology 2021; 162:6259332. [PMID: 33928351 PMCID: PMC8237996 DOI: 10.1210/endocr/bqab088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 12/19/2022]
Abstract
Breast cancer is a highly heterogeneous disease, encompassing many subtypes that have distinct origins, behaviors, and prognoses. Although traditionally seen as a genetic disease, breast cancer is now also known to involve epigenetic abnormalities. Epigenetic regulators, such as DNA methyltransferases and histone-modifying enzymes, play essential roles in gene regulation and cancer development. Dysregulation of epigenetic regulator activity has been causally linked with breast cancer pathogenesis. Hairless (HR) encodes a 130-kDa transcription factor that is essential for development and tissue homeostasis. Its role in transcription regulation is partly mediated by its interaction with multiple nuclear receptors, including thyroid hormone receptor, retinoic acid receptor-related orphan receptors, and vitamin D receptor. HR has been studied primarily in epidermal development and homeostasis. Hr-mutant mice are highly susceptible to ultraviolet- or carcinogen-induced skin tumors. Besides its putative tumor suppressor function in skin, loss of HR function has also been implicated in increased leukemia susceptibility and promotes the growth of melanoma and brain cancer cells. HR has also been demonstrated to function as a histone H3 lysine 9 demethylase. Recent genomics studies have identified HR mutations in a variety of human cancers, including breast cancer. The anticancer function and mechanism of action by HR in mammary tissue remains to be investigated. Here, we review the emerging role of HR, its histone demethylase activity and histone methylation in breast cancer development, and potential for epigenetic therapy.
Collapse
Affiliation(s)
- Megan H Trager
- Columbia University Vagelos College of Physicians and Surgeons, New York, New York 10032, USA
| | - Bindeshwar Sah
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | - Zhongming Chen
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55912, USA
| | - Liang Liu
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55912, USA
- Correspondence: Liang Liu, PhD, The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA.
| |
Collapse
|
28
|
Wu HJ, Chu PY. Epigenetic Regulation of Breast Cancer Stem Cells Contributing to Carcinogenesis and Therapeutic Implications. Int J Mol Sci 2021; 22:ijms22158113. [PMID: 34360879 PMCID: PMC8348144 DOI: 10.3390/ijms22158113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Globally, breast cancer has remained the most commonly diagnosed cancer and the leading cause of cancer death among women. Breast cancer is a highly heterogeneous and phenotypically diverse group of diseases, which require different selection of treatments. Breast cancer stem cells (BCSCs), a small subset of cancer cells with stem cell-like properties, play essential roles in breast cancer progression, recurrence, metastasis, chemoresistance and treatments. Epigenetics is defined as inheritable changes in gene expression without alteration in DNA sequence. Epigenetic regulation includes DNA methylation and demethylation, as well as histone modifications. Aberrant epigenetic regulation results in carcinogenesis. In this review, the mechanism of epigenetic regulation involved in carcinogenesis, therapeutic resistance and metastasis of BCSCs will be discussed, and finally, the therapies targeting these biomarkers will be presented.
Collapse
Affiliation(s)
- Hsing-Ju Wu
- Department of Biology, National Changhua University of Education, Changhua 500, Taiwan;
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- Department of Medical Research, Chang Bing Show Chwan Memorial Hospital, Lukang Town, Changhua 505, Taiwan
| | - Pei-Yi Chu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- Department of Health Food, Chung Chou University of Science and Technology, Changhua 510, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
- Correspondence: ; Tel.: +886-975611855; Fax: +886-47227116
| |
Collapse
|
29
|
Yuan L, Sun B, Xu L, Chen L, Ou W. The Updating of Biological Functions of Methyltransferase SETDB1 and Its Relevance in Lung Cancer and Mesothelioma. Int J Mol Sci 2021; 22:ijms22147416. [PMID: 34299035 PMCID: PMC8306223 DOI: 10.3390/ijms22147416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022] Open
Abstract
SET domain bifurcated 1 (SETDB1) is a histone H3 lysine 9 (H3K9) methyltransferase that exerts important effects on epigenetic gene regulation. SETDB1 complexes (SETDB1-KRAB-KAP1, SETDB1-DNMT3A, SETDB1-PML, SETDB1-ATF7IP-MBD1) play crucial roles in the processes of histone methylation, transcriptional suppression and chromatin remodelling. Therefore, aberrant trimethylation at H3K9 due to amplification, mutation or deletion of SETDB1 may lead to transcriptional repression of various tumour-suppressing genes and other related genes in cancer cells. Lung cancer is the most common type of cancer worldwide in which SETDB1 amplification and H3K9 hypermethylation have been indicated as potential tumourigenesis markers. In contrast, frequent inactivation mutations of SETDB1 have been revealed in mesothelioma, an asbestos-associated, locally aggressive, highly lethal, and notoriously chemotherapy-resistant cancer. Above all, the different statuses of SETDB1 indicate that it may have different biological functions and be a potential diagnostic biomarker and therapeutic target in lung cancer and mesothelioma.
Collapse
Affiliation(s)
| | | | | | | | - Wenbin Ou
- Correspondence: ; Tel./Fax: +86-571-86843303
| |
Collapse
|
30
|
Lee J, Kim K, Ryu TY, Jung CR, Lee MS, Lim JH, Park K, Kim DS, Son MY, Hamamoto R, Cho HS. EHMT1 knockdown induces apoptosis and cell cycle arrest in lung cancer cells by increasing CDKN1A expression. Mol Oncol 2021; 15:2989-3002. [PMID: 34214254 PMCID: PMC8564652 DOI: 10.1002/1878-0261.13050] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 06/01/2021] [Accepted: 07/01/2021] [Indexed: 12/16/2022] Open
Abstract
Dozens of histone methyltransferases have been identified and biochemically characterized, but the pathological roles of their dysfunction in human diseases such as cancer remain largely unclear. Here, we demonstrate the involvement of EHMT1, a histone lysine methyltransferase, in lung cancer. Immunohistochemical analysis indicated that the expression levels of EHMT1 are significantly elevated in human lung carcinomas compared with non‐neoplastic lung tissues. Through gene ontology analysis of RNA‐seq results, we showed that EHMT1 is clearly associated with apoptosis and the cell cycle process. Moreover, FACS analysis and cell growth assays showed that knockdown of EHMT1 induced apoptosis and G1 cell cycle arrest via upregulation of CDKN1A in A549 and H1299 cell lines. Finally, in 3D spheroid culture, compared to control cells, EHMT1 knockdown cells exhibited reduced aggregation of 3D spheroids and clear upregulation of CDKN1A and downregulation of E‐cadherin. Therefore, the results of the present study suggest that EHMT1 plays a critical role in the regulation of cancer cell apoptosis and the cell cycle by modulating CDKN1A expression. Further functional analyses of EHMT1 in the context of human tumorigenesis may aid in the development of novel therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Jinkwon Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Korea
| | - Kwangho Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Tae Young Ryu
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Cho-Rok Jung
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Korea
| | - Moo-Seung Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Jung Hwa Lim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Kunhyang Park
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Dae-Soo Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Korea
| | - Mi-Young Son
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Korea
| | - Ryuji Hamamoto
- Division of Molecular Modification and Cancer Biology, National Cancer Center, Tokyo, Japan
| | - Hyun-Soo Cho
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon, Korea
| |
Collapse
|
31
|
Expression and function of Smad7 in autoimmune and inflammatory diseases. J Mol Med (Berl) 2021; 99:1209-1220. [PMID: 34059951 PMCID: PMC8367892 DOI: 10.1007/s00109-021-02083-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 12/22/2022]
Abstract
Transforming growth factor-β (TGF-β) plays a critical role in the pathological processes of various diseases. However, the signaling mechanism of TGF-β in the pathological response remains largely unclear. In this review, we discuss advances in research of Smad7, a member of the I-Smads family and a negative regulator of TGF-β signaling, and mainly review the expression and its function in diseases. Smad7 inhibits the activation of the NF-κB and TGF-β signaling pathways and plays a pivotal role in the prevention and treatment of various diseases. Specifically, Smad7 can not only attenuate growth inhibition, fibrosis, apoptosis, inflammation, and inflammatory T cell differentiation, but also promotes epithelial cells migration or disease development. In this review, we aim to summarize the various biological functions of Smad7 in autoimmune diseases, inflammatory diseases, cancers, and kidney diseases, focusing on the molecular mechanisms of the transcriptional and posttranscriptional regulation of Smad7.
Collapse
|
32
|
Kim BC, Kim J, Kim K, Byun BH, Lim I, Kong CB, Song WS, Koh JS, Woo SK. Preliminary Radiogenomic Evidence for the Prediction of Metastasis and Chemotherapy Response in Pediatric Patients with Osteosarcoma Using 18F-FDF PET/CT, EZRIN and KI67. Cancers (Basel) 2021; 13:cancers13112671. [PMID: 34071614 PMCID: PMC8198322 DOI: 10.3390/cancers13112671] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 01/08/2023] Open
Abstract
Simple Summary Pediatric osteosarcoma is one of the most aggressive cancers, and predictions of metastasis and chemotherapy response have a significant impact on pediatric patient survival. Radiogenomics, as methods of analyzing gene expression or image texture features, have previously been used for the diagnosis of chemotherapy responses and metastasis and can reveal the current state of cancer. In this study, we aimed to generate a predictive model using gene expression and 18F-FDG PET/CT image texture features in pediatric osteosarcoma in relation to metastasis and chemotherapy response. A predictive model using radiogenomics technology that incorporates both imaging features and gene expression can accurately predict metastasis and chemotherapy responses to improve patient outcomes. Abstract Chemotherapy response and metastasis prediction play important roles in the treatment of pediatric osteosarcoma, which is prone to metastasis and has a high mortality rate. This study aimed to estimate the prediction model using gene expression and image texture features. 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) images of 52 pediatric osteosarcoma patients were used to estimate the machine learning algorithm. An appropriate algorithm was selected by estimating the machine learning accuracy. 18F-FDG PET/CT images of 21 patients were selected for prediction model development based on simultaneous KI67 and EZRIN expression. The prediction model for chemotherapy response and metastasis was estimated using area under the curve (AUC) maximum image texture features (AUC_max) and gene expression. The machine learning algorithm with the highest test accuracy in chemotherapy response and metastasis was selected using the random forest algorithm. The chemotherapy response and metastasis test accuracy with image texture features was 0.83 and 0.76, respectively. The highest test accuracy and AUC of chemotherapy response with AUC_max, KI67, and EZRIN were estimated to be 0.85 and 0.89, respectively. The highest test accuracy and AUC of metastasis with AUC_max, KI67, and EZRIN were estimated to be 0.85 and 0.8, respectively. The metastasis prediction accuracy increased by 10% using radiogenomics data.
Collapse
Affiliation(s)
- Byung-Chul Kim
- Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (B.-C.K.); (B.H.B.); (I.L.)
| | - Jingyu Kim
- Radiological & Medico-Oncological Sciences, University of Science & Technology, Seoul 34113, Korea;
| | - Kangsan Kim
- Division of Applied RI, Korea Institute of Radiological and Medical Science, Seoul 01812, Korea;
| | - Byung Hyun Byun
- Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (B.-C.K.); (B.H.B.); (I.L.)
| | - Ilhan Lim
- Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea; (B.-C.K.); (B.H.B.); (I.L.)
| | - Chang-Bae Kong
- Department of Orthopaedic Surgery, Seoul National University Hospital, Seoul 03080, Korea; (C.-B.K.); (W.S.S.)
| | - Won Seok Song
- Department of Orthopaedic Surgery, Seoul National University Hospital, Seoul 03080, Korea; (C.-B.K.); (W.S.S.)
| | - Jae-Soo Koh
- Department of Pathology, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea;
| | - Sang-Keun Woo
- Radiological & Medico-Oncological Sciences, University of Science & Technology, Seoul 34113, Korea;
- Division of Applied RI, Korea Institute of Radiological and Medical Science, Seoul 01812, Korea;
- Correspondence: ; Tel.: +82-2-970-1659
| |
Collapse
|
33
|
Lazaro-Camp VJ, Salari K, Meng X, Yang S. SETDB1 in cancer: overexpression and its therapeutic implications. Am J Cancer Res 2021; 11:1803-1827. [PMID: 34094655 PMCID: PMC8167684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023] Open
Abstract
SET Domain Bifurcated Histone Lysine Methyltransferase 1 (SETDB1, ESET, KMT1E) is a H3K9 methyltransferase involved in gene silencing. In recent years, SETDB1 has been implicated as an oncogene in various cancers, highlighting a critical need to better understand the mechanisms underlying SETDB1 amplification, overexpression, and activation. In the following review, we first examine the history of SETDB1, starting from its discovery in 1999 and ending with recent findings. We follow with an outline of the structure and subcellular location of SETDB1, as well as potential mechanisms for regulation of its nuclear transport. Subsequently, we introduce SETDB1's various functions, including its roles in promyelocytic leukemia nuclear body (PML-NB) formation, the methylation and activation of Akt, the silencing of the androgen receptor (AR) gene, retroelement silencing, the inhibition of tumor suppressor p53, and its role in promoting intestinal differentiation and survival. The Cancer Cell Line Encyclopedia (CCLE) screened SETDB1 dependency in 796 cancer cell lines, identifying SETDB1 as a common essential gene in 531 of them, demonstrating that SETDB1 expression is critical for the survival of the majority of cancers. Therefore, we provide a detailed review of the oncogenic effects of SETDB1 overexpression in breast cancer, non-small cell lung cancer, prostate cancer, colorectal cancer, acute myeloid leukemia, glioma, melanoma, pancreatic ductal adenocarcinoma, liver cancer, nasopharyngeal carcinoma, gastric carcinoma, and endometrial cancer. Accordingly, we review several methods that have been used to target SETDB1, such as using Mithramycin A, Mithralog EC-8042, 3'-deazaneplanocin A (DZNep), and paclitaxel. Finally, we conclude by highlighting remaining gaps in knowledge and challenges surrounding SETDB1. Ultimately, our review captures the wide scope of findings on SETDB1's history, function, its implications in cancer, and provides suggestions for future research in the field.
Collapse
Affiliation(s)
- Vanessa J Lazaro-Camp
- Department of Pathology, Carver College of Medicine, University of IowaIowa, IA, USA
| | - Kiarash Salari
- Department of Pathology, Carver College of Medicine, University of IowaIowa, IA, USA
| | - Xiangbing Meng
- Department of Pathology, Carver College of Medicine, University of IowaIowa, IA, USA
- Holden Comprehensive Cancer Center, Carver College of Medicine, University of IowaIA, USA
| | - Shujie Yang
- Department of Pathology, Carver College of Medicine, University of IowaIowa, IA, USA
- Holden Comprehensive Cancer Center, Carver College of Medicine, University of IowaIA, USA
| |
Collapse
|
34
|
Strepkos D, Markouli M, Klonou A, Papavassiliou AG, Piperi C. Histone Methyltransferase SETDB1: A Common Denominator of Tumorigenesis with Therapeutic Potential. Cancer Res 2021; 81:525-534. [PMID: 33115801 DOI: 10.1158/0008-5472.can-20-2906] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/06/2020] [Accepted: 10/23/2020] [Indexed: 11/16/2022]
Abstract
Epigenetic regulation of gene expression has been ultimately linked to cancer development, with posttranslational histone modifications representing attractive targets for disease monitoring and therapy. Emerging data have demonstrated histone lysine (K) methylation by methyltransferase SETDB1 as a common denominator of gene regulation in several cancer types. SETDB1 reversibly catalyzes the di- and trimethylation of histone 3 (H3) K9 in euchromatic regions of chromosomes, inhibiting gene transcription within these regions and promoting a switch from euchromatic to heterochromatic states. Recent studies have implicated aberrant SETDB1 activity in the development of various types of cancers, including brain, head and neck, lung, breast, gastrointestinal, ovarian, endometrial and prostate cancer, mesothelioma, melanoma, leukemias, and osteosarcoma. Although its role has not been fully elucidated in every case, most data point toward a pro-oncogenic potential of SETDB1 via the downregulation of critical tumor-suppressive genes. Less commonly, however, SETDB1 can also acquire a tumor-suppressive role, depending on cancer type and stage. Here we provide an updated overview of the cellular and molecular effects underlying SETDB1 activity in cancer development and progression along with current targeting strategies in different cancer types, with promising effects either as a standalone therapy or in conjunction with other therapeutic agents.
Collapse
Affiliation(s)
- Dimitrios Strepkos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Mariam Markouli
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexia Klonou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
35
|
Saha N, Muntean AG. Insight into the multi-faceted role of the SUV family of H3K9 methyltransferases in carcinogenesis and cancer progression. Biochim Biophys Acta Rev Cancer 2020; 1875:188498. [PMID: 33373647 DOI: 10.1016/j.bbcan.2020.188498] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022]
Abstract
Growing evidence implicates histone H3 lysine 9 methylation in tumorigenesis. The SUV family of H3K9 methyltransferases, which include G9a, GLP, SETDB1, SETDB2, SUV39H1 and SUV39H2 deposit H3K9me1/2/3 marks at euchromatic and heterochromatic regions, catalyzed by their conserved SET domain. In cancer, this family of enzymes can be deregulated by genomic alterations and transcriptional mis-expression leading to alteration of transcriptional programs. In solid and hematological malignancies, studies have uncovered pro-oncogenic roles for several H3K9 methyltransferases and accordingly, small molecule inhibitors are being tested as potential therapies. However, emerging evidence demonstrate onco-suppressive roles for these enzymes in cancer development as well. Here, we review the role H3K9 methyltransferases play in tumorigenesis focusing on gene targets and biological pathways affected due to misregulation of these enzymes. We also discuss molecular mechanisms regulating H3K9 methyltransferases and their influence on cancer. Finally, we describe the impact of H3K9 methylation on therapy induced resistance in carcinoma. Converging evidence point to multi-faceted roles for H3K9 methyltransferases in development and cancer that encourages a deeper understanding of these enzymes to inform novel therapy.
Collapse
Affiliation(s)
- Nirmalya Saha
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States of America
| | - Andrew G Muntean
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States of America.
| |
Collapse
|
36
|
Kang YK, Min B. SETDB1 Overexpression Sets an Intertumoral Transcriptomic Divergence in Non-small Cell Lung Carcinoma. Front Genet 2020; 11:573515. [PMID: 33343623 PMCID: PMC7738479 DOI: 10.3389/fgene.2020.573515] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
An increasing volume of evidence suggests that SETDB1 plays a role in the tumorigenesis of various cancers, classifying SETDB1 as an oncoprotein. However, owing to its numerous protein partners and their global-scale effects, the molecular mechanism underlying SETDB1-involved oncogenesis remains ambiguous. In this study, using public transcriptome data of lung adenocarcinoma (ADC) and squamous-cell carcinoma (SCC), we compared tumors with high-level SETDB1 (SH) and those with low-level SETDB1 (comparable with normal samples; SL). The results of principal component analysis revealed a transcriptomic distinction and divergence between the SH and SL samples in both ADCs and SCCs. The results of gene set enrichment analysis indicated that genes involved in the “epithelial–mesenchymal transition,” “innate immune response,” and “autoimmunity” collections were significantly depleted in SH tumors, whereas those involved in “RNA interference” collections were enriched. Chromatin-modifying genes were highly expressed in SH tumors, and the variance in their expression was incomparably high in SCC-SH, which suggested greater heterogeneity within SCC tumors. DNA methyltransferase genes were also overrepresented in SH samples, and most differentially methylated CpGs (SH/SL) were undermethylated in a highly biased manner in ADCs. We identified interesting molecular signatures associated with the possible roles of SETDB1 in lung cancer. We expect these SETDB1-associated molecular signatures to facilitate the development of biologically relevant targeted therapies for particular types of lung cancer.
Collapse
Affiliation(s)
- Yong-Kook Kang
- Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology, Daejeon, South Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon, South Korea
| | - Byungkuk Min
- Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology, Daejeon, South Korea
| |
Collapse
|
37
|
Han S, Zhen W, Guo T, Zou J, Li F. SETDB1 promotes glioblastoma growth via CSF-1-dependent macrophage recruitment by activating the AKT/mTOR signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:218. [PMID: 33059737 PMCID: PMC7560339 DOI: 10.1186/s13046-020-01730-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022]
Abstract
Background Glioblastoma is a common disease of the central nervous system (CNS), with high morbidity and mortality. In the infiltrate in the tumor microenvironment, tumor-associated macrophages (TAMs) are abundant, which are important factors in glioblastoma progression. However, the exact details of TAMs in glioblastoma progression have yet to be determined. Methods The clinical relevance of SET domain bifurcated 1 (SETDB1) was analyzed by immunohistochemistry, real-time PCR and Western blotting of glioblastoma tissues. SETDB1-induced cell proliferation, migration and invasion were investigated by CCK-8 assay, colony formation assay, wound healing and Transwell assay. The relationship between SETDB1 and colony stimulating factor 1 (CSF-1), as well as TAMs recruitment was examined by Western blotting, real-time PCR and syngeneic mouse model. Results Our findings showed that SETDB1 upregulated in glioblastoma and relative to poor progression. Gain and loss of function approaches showed the SETDB1 overexpression promotes cell proliferation, migration and invasion in glioblastoma cells. However, knockdown SETDB1 exerted opposite effects in vitro. Moreover, SETDB1 promotes AKT/mTOR-dependent CSF-1 induction and secretion, which leads to macrophage recruitment in the tumor, resulted in tumor growth. Conclusion Our research clarified that SETDB1 regulates of tumor microenvironment and hence presents a potential therapeutic target for treating glioblastoma.
Collapse
Affiliation(s)
- Shuai Han
- Department of Neurosurgery, the First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Wei Zhen
- Department of Neurosurgery, The People's Hospital of China Medical University (The People's Hospital of Liaoning Province), No.33, Wenyi Road, Shenhe District, Shenyang, 110016, Liaoning Province, PR China
| | - Tongqi Guo
- Department of Neurosurgery, The People's Hospital of China Medical University (The People's Hospital of Liaoning Province), No.33, Wenyi Road, Shenhe District, Shenyang, 110016, Liaoning Province, PR China
| | - Jianjun Zou
- Department of Neurosurgery, The People's Hospital of China Medical University (The People's Hospital of Liaoning Province), No.33, Wenyi Road, Shenhe District, Shenyang, 110016, Liaoning Province, PR China
| | - Fuyong Li
- Department of Neurosurgery, The People's Hospital of China Medical University (The People's Hospital of Liaoning Province), No.33, Wenyi Road, Shenhe District, Shenyang, 110016, Liaoning Province, PR China.
| |
Collapse
|
38
|
Na HH, Moon S, Kim KC. Knockout of SETDB1 gene using the CRISPR/cas-9 system increases migration and transforming activities via complex regulations of E-cadherin, β-catenin, STAT3, and Akt. Biochem Biophys Res Commun 2020; 533:486-492. [PMID: 32972752 DOI: 10.1016/j.bbrc.2020.09.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/09/2020] [Indexed: 12/17/2022]
Abstract
SETDB1 HMTase participates in various cellular processes via epigenetic transcriptional regulation. SETDB1 expression is downregulated by anticancer drug treatment in cancer cells, but we still need to verify the functional significance on SETDB1 downregulation. CRISPR/cas9 is a useful technology for doing a knockout (KO) of a target gene. It is widely used to examine the function of genes. In this study, we prepared SETDB1-KO from A549 human lung cancer cells using the CRISPR/Cas9 system, and we compared molecular changes between the A549 cells and the SETDB1-KO cells. The SETDB1-KO cell proliferation rate was slightly decreased as compared to the A549 cells, but there was no large difference in sensitivity with doxorubicin treatment. Instead, the migration activity and transforming activity were dramatically increased in SETDB-KO cells. Using a western blot analysis and an immunostaining experiment, we confirmed that SETDB1-KO downregulates the expression of E-cadherin and β-catenin. A qPCR and an RT-PCR analysis suggested that SETDB1 transcriptionally regulates E-cadherin and β-catenin. Moreover, E-cadherin expression was also detected in the cytoplasmic region of SETDB1-KO cells, indicating that functional localization of E-cadherin might be changed in SETDB1-KO cells. On the other hand, total levels of STAT3 and Akt were increased in the SETDB1-KO cells, but activation of STAT3 (pSTAT3) was not induced in doxorubicin-treated SETDB1-KO cells. SETDB1 overexpression into SETDB1-KO cells restores the expression of E-cadherin, β-catenin, STAT3, and Akt, suggesting that those proteins are tightly regulated by SETDB1. Collectively, we suggest that complex regulations on E-cadherin, β-catenin, STAT3, and Akt are correlated with the increased migration and transforming activity of SETDB1-KO cells.
Collapse
Affiliation(s)
- Han-Heom Na
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sungjin Moon
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keun-Cheol Kim
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
39
|
Pan S, Zhou G, Hu W, Pei H. SMAD-6, -7 and -9 are potential molecular biomarkers for the prognosis in human lung cancer. Oncol Lett 2020; 20:2633-2644. [PMID: 32782581 PMCID: PMC7401007 DOI: 10.3892/ol.2020.11851] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/13/2020] [Indexed: 12/24/2022] Open
Abstract
SMADs, a family of proteins that function as signal transducers and transcriptional regulators to regulate various signaling pathways, including the transforming growth factor-β signaling pathway, are similar to the mothers against decapentaplegic family of genes and the sma gene family in Caenorhabditis elegans. SMADs generate context-dependent modulation by interacting with various sequence-specific transcription factors, such as E2F4/5, c-Fos, GATA3, YY1 and SRF, which have been found to serve a key role in lung carcinoma oncogenesis and progression. However, the prognostic values of the eight SMADs in lung cancer have not been fully understood. In the present study, the expression levels and survival data of SMADs in patients with lung carcinoma from the Oncomine, Gene Expression Profiling Interactive Analysis, Kaplan-Meier plotter and cBioPortal databases were downloaded and analyzed. It was found that the mRNA expression levels of SMAD-6, -7 and -9 were decreased in lung adenocarcinoma and squamous cell carcinoma compared with that in adjacent normal tissues, while there was no significant difference in SMADs 1-5. Survival analysis revealed that not only were low transcriptional levels of SMAD-6, -7 and -9 associated with low overall survival but they also had prognostic role for progression-free survival and post-progression survival (P<0.05) in patients with lung carcinoma. In conclusion, the present study demonstrated that SMAD-6, -7 and -9 are potential biomarkers for the prognosis of patients with lung carcinoma.
Collapse
Affiliation(s)
- Shuxian Pan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, P.R. China
- Department of Radiation Oncology, Yancheng Third People's Hospital, Yancheng, Jiangsu 224000, P.R. China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Hailong Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
40
|
He Z, Chen Z, Tan M, Elingarami S, Liu Y, Li T, Deng Y, He N, Li S, Fu J, Li W. A review on methods for diagnosis of breast cancer cells and tissues. Cell Prolif 2020; 53:e12822. [PMID: 32530560 PMCID: PMC7377933 DOI: 10.1111/cpr.12822] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/10/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer has seriously been threatening physical and mental health of women in the world, and its morbidity and mortality also show clearly upward trend in China over time. Through inquiry, we find that survival rate of patients with early‐stage breast cancer is significantly higher than those with middle‐ and late‐stage breast cancer, hence, it is essential to conduct research to quickly diagnose breast cancer. Until now, many methods for diagnosing breast cancer have been developed, mainly based on imaging and molecular biotechnology examination. These methods have great contributions in screening and confirmation of breast cancer. In this review article, we introduce and elaborate the advances of these methods, and then conclude some gold standard diagnostic methods for certain breast cancer patients. We lastly discuss how to choose the most suitable diagnostic methods for breast cancer patients. In general, this article not only summarizes application and development of these diagnostic methods, but also provides the guidance for researchers who work on diagnosis of breast cancer.
Collapse
Affiliation(s)
- Ziyu He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China.,State Key Laboratory of Bioelectronics, School of Biological and Medical Engineering, Southeast University, Nanjing, China
| | - Miduo Tan
- Surgery Department of Galactophore, Central Hospital of Zhuzhou City, Zhuzhou, China
| | - Sauli Elingarami
- School of Life Sciences and Bioengineering (LiSBE), The Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
| | - Yuan Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China.,State Key Laboratory of Bioelectronics, School of Biological and Medical Engineering, Southeast University, Nanjing, China
| | - Taotao Li
- Hunan Provincial Key Lab of Dark Tea and Jin-hua, School of Materials and Chemical Engineering, Hunan City University, Yiyang, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Nongyue He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China.,State Key Laboratory of Bioelectronics, School of Biological and Medical Engineering, Southeast University, Nanjing, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Juan Fu
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Wen Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| |
Collapse
|
41
|
Cao N, Yu Y, Zhu H, Chen M, Chen P, Zhuo M, Mao Y, Li L, Zhao Q, Wu M, Ye M. SETDB1 promotes the progression of colorectal cancer via epigenetically silencing p21 expression. Cell Death Dis 2020; 11:351. [PMID: 32393761 PMCID: PMC7214465 DOI: 10.1038/s41419-020-2561-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
SETDB1, a histone H3K9 methyltransferase, has been reported to be upregulated in a variety of tumors and promotes cancer development. However, the exact pathogenesis of SETDB1 in human colorectal cancer (CRC) is hitherto unknown. Here, we showed that SETDB1 expression was highly amplified in CRC. Functionally, SETDB1 downregulation in SW480 and HCT116 cells reduced cell proliferation, migration, invasion, and increased CRC cells apoptosis. In contrast, SETDB1 overexpression promoted CRC cells proliferation, migration, and invasion. High expression of SETDB1 was associated with a more aggressive phenotype in vitro. Flow cytometry showed that cell cycle was arrested in G1 phase after SETDB1 silencing. Furthermore, depletion of SETDB1 in vivo suppressed CRC cells proliferation. Mechanistically, p21 was identified as the target of SETDB1. After transfected with siSETDB1, expression of p21 was distinctly increased. In contrast, expression of p21 was significantly decreased after overexpression SETDB1. We also showed that SETDB1 could be involved in the regulation of epithelial–mesenchymal transition (EMT) in HCT116 cells. Moreover, we confirmed that SETDB1 could regulate the activity of p21 promoter by dual-luciferase repoter assay, and proved that SETDB1 could bind to the promoter of p21 and regulate its H3K9me3 enrichment level by ChIP-PCR experiment. Finally, we verified that silencing of SETDB1 inhibited CRC tumorigenesis in vivo. In conclusion, our results indicate that SETDB1 is a major driver of CRC development and might provide a new therapeutic target for the clinical treatment of CRC.
Collapse
Affiliation(s)
- Nan Cao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, Hubei, 430071, China
| | - Yali Yu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, Hubei, 430071, China
| | - Hua Zhu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, Hubei, 430071, China
| | - Meng Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, Hubei, 430071, China
| | - Ping Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, Hubei, 430071, China
| | - Mingxing Zhuo
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, Hubei, 430071, China
| | - Yujuan Mao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, Hubei, 430071, China
| | - Lianyun Li
- College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, Hubei, 430071, China
| | - Min Wu
- College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Mei Ye
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China. .,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, Hubei, 430071, China.
| |
Collapse
|
42
|
RNA-seq based transcriptome analysis of EHMT2 functions in breast cancer. Biochem Biophys Res Commun 2020; 524:672-676. [DOI: 10.1016/j.bbrc.2020.01.128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/23/2020] [Indexed: 02/06/2023]
|
43
|
Xiao Y, Qing J, Li B, Chen L, Nong S, Yang W, Tang X, Chen Z. TIM-3 Participates in the Invasion and Metastasis of Nasopharyngeal Carcinoma via SMAD7/SMAD2/SNAIL1 Axis-Mediated Epithelial-Mesenchymal Transition. Onco Targets Ther 2020; 13:1993-2006. [PMID: 32184631 PMCID: PMC7064287 DOI: 10.2147/ott.s237222] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
Background T-cell immunoglobulin and mucin domain-containing molecule-3 (TIM-3) was originally found to negatively regulate immune response and mediate immune escape in tumors. Subsequently, an increasing body of evidence has shown that TIM-3 exerts positive functions in the development and progression of several tumors. However, the role of TIM-3 in nasopharyngeal carcinoma (NPC) remains unknown. Methods Data from the Cancer Genome Atlas-head and neck squamous cell carcinoma and immunohistochemistry were analyzed to compare the expression of TIM-3 in NPC and non-cancerous nasopharyngitis tissues. Cell proliferation was evaluated using the Cell counting kit-8 in vitro and xenograft experiment in nude mice in vivo. Flow cytometry was used to evaluate the cell cycle. The migration and invasion of NPC cells were assessed through wound healing and Transwell assays. In addition, Western blotting was used to analyze the expression of specific proteins. Results Higher expression of TIM-3 was detected in NPC tissues than normal nasopharyngeal tissues and positively correlated with the clinical stage and T classification; however, it was not correlated with gender, age, and N classification. Furthermore, overexpression of TIM-3 using lentiviral vectors increased the malignancy of 6-10B and CNE-2 cell lines that lowly express TIM-3, by promoting cell proliferation, migration, and invasion in vitro and in vivo. In addition, overexpression of TIM-3 was associated with upregulation of matrix metalloproteinase 9 (MMP9) and MMP2, and led to epithelial-mesenchymal transition (EMT) by increasing the levels of mesenchymal markers (ie, N-cadherin, Vimentin) and decreasing those of the epithelial marker E-cadherin. Further study showed that SMAD7 was downregulated in the TIM-3 overexpression group. Relatively, phosphorylated SMAD2 and downstream molecule SNAIL1 were also upregulated in this group. Conclusion TIM-3 exerts a tumor-promoting function in NPC by mediating changes in the SMAD7/SMAD2/SNAIL1 axis. These findings provide a new idea for the study of invasion, metastasis, and treatment of NPC.
Collapse
Affiliation(s)
- Yangyang Xiao
- Department of Clinical Laboratory, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, People's Republic of China
| | - Jilin Qing
- Center for Reproductive Medicine and Genetics, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, People's Republic of China
| | - Baoxuan Li
- Department of Ophthalmology, Binzhou Medical University Hospital, Binzhou, Shandong 256603, People's Republic of China
| | - Liuyan Chen
- Department of Clinical Laboratory, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, People's Republic of China
| | - Shengzhou Nong
- Department of Clinical Laboratory, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, People's Republic of China
| | - Wenhui Yang
- Department of Clinical Laboratory, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, People's Republic of China
| | - Xiaogang Tang
- Department of Intensive Care Unit, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, People's Republic of China
| | - Zhizhong Chen
- Department of Clinical Laboratory, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, People's Republic of China
| |
Collapse
|
44
|
Cheng Y, He C, Wang M, Ma X, Mo F, Yang S, Han J, Wei X. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther 2019; 4:62. [PMID: 31871779 PMCID: PMC6915746 DOI: 10.1038/s41392-019-0095-0] [Citation(s) in RCA: 676] [Impact Index Per Article: 112.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 02/05/2023] Open
Abstract
Epigenetic alternations concern heritable yet reversible changes in histone or DNA modifications that regulate gene activity beyond the underlying sequence. Epigenetic dysregulation is often linked to human disease, notably cancer. With the development of various drugs targeting epigenetic regulators, epigenetic-targeted therapy has been applied in the treatment of hematological malignancies and has exhibited viable therapeutic potential for solid tumors in preclinical and clinical trials. In this review, we summarize the aberrant functions of enzymes in DNA methylation, histone acetylation and histone methylation during tumor progression and highlight the development of inhibitors of or drugs targeted at epigenetic enzymes.
Collapse
Affiliation(s)
- Yuan Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Cai He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Mo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shengyong Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Junhong Han
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
45
|
Downregulation of miR-302b is associated with poor prognosis and tumor progression of breast cancer. Breast Cancer 2019; 27:291-298. [PMID: 31721061 DOI: 10.1007/s12282-019-01022-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/31/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are well known to play crucial role in various types of cancers, including breast cancer (BC). METHODS The present study aimed to investigate the expression, clinical value, and functional role of miR-302b in BC. The expression level of miR-302b was determined by quantitative real-time polymerase chain reaction (qRT-PCR). The clinical value of miR-302b in BC prognosis was calculated via Kaplan-Meier survival analysis and Cox regression analysis. Cell experiments were applied to investigate the functional role of miR-302b in BC. RESULTS miR-302b was significantly downregulated in BC tissues and cell lines compared to the corresponding controls (all P < 0.01). Notably, the expression of miR-302b was significantly associated with lymph node metastasis and TNM stage (all P < 0.05). Patients with lower miR-302b expression had shorter survival time than those with higher miR-302b expression (log-rank P = 0.002). Furthermore, miR-302b expression and TNM stage were proven to be independent prognostic factors for BC. Overexpression of miR-302b inhibited BC cell proliferation, migration, and invasion in BT549 and MCF-7 cell lines, while silence of miR-302b exhibited an opposite effects on BC cells (all P < 0.05). RUNX2 was determined to be the target gene of miR-302b. CONCLUSIONS The present study suggests that miR-302b functions as a tumor suppressor in BC and inhibits the tumor progression of BC via targeting RUNX2. Downregulation of miR-302b might be a significant prognostic factor for poor survival in BC patients.
Collapse
|
46
|
Epigenetic Alterations of Heat Shock Proteins (HSPs) in Cancer. Int J Mol Sci 2019; 20:ijms20194758. [PMID: 31557887 PMCID: PMC6801855 DOI: 10.3390/ijms20194758] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/15/2022] Open
Abstract
Heat shock proteins (HSPs) are associated with various physiological processes (protein refolding and degradation) involved in the responses to cellular stress, such as cytotoxic agents, high temperature, and hypoxia. HSPs are overexpressed in cancer cells and play roles in their apoptosis, invasion, proliferation, angiogenesis, and metastasis. The regulation or translational modification of HSPs is recognized as a therapeutic target for the development of anticancer drugs. Among the regulatory processes associated with HSP expression, the epigenetic machinery (miRNAs, histone modification, and DNA methylation) has key functions in cancer. Moreover, various epigenetic modifiers of HSP expression have also been reported as therapeutic targets and diagnostic markers of cancer. Thus, in this review, we describe the epigenetic alterations of HSP expression in cancer cells and suggest that HSPs be clinically applied as diagnostic and therapeutic markers in cancer therapy via controlled epigenetic modifiers.
Collapse
|
47
|
Batham J, Lim PS, Rao S. SETDB-1: A Potential Epigenetic Regulator in Breast Cancer Metastasis. Cancers (Basel) 2019; 11:cancers11081143. [PMID: 31405032 PMCID: PMC6721492 DOI: 10.3390/cancers11081143] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
The full epigenetic repertoire governing breast cancer metastasis is not completely understood. Here, we discuss the histone methyltransferase SET Domain Bifurcated Histone Lysine Methyltransferase 1 (SETDB1) and its role in breast cancer metastasis. SETDB1 serves as an exemplar of the difficulties faced when developing therapies that not only specifically target cancer cells but also the more elusive and aggressive stem cells that contribute to metastasis via epithelial-to-mesenchymal transition and confer resistance to therapies.
Collapse
Affiliation(s)
- Jacob Batham
- Melanie Swan Memorial Translational Centre, Faculty of Sci-Tech, University of Canberra, Bruce ACT 2617, Australia
| | - Pek Siew Lim
- Melanie Swan Memorial Translational Centre, Faculty of Sci-Tech, University of Canberra, Bruce ACT 2617, Australia.
| | - Sudha Rao
- Melanie Swan Memorial Translational Centre, Faculty of Sci-Tech, University of Canberra, Bruce ACT 2617, Australia.
| |
Collapse
|
48
|
Kim K, Kwon O, Ryu TY, Jung CR, Kim J, Min JK, Kim DS, Son MY, Cho HS. Propionate of a microbiota metabolite induces cell apoptosis and cell cycle arrest in lung cancer. Mol Med Rep 2019; 20:1569-1574. [PMID: 31257531 PMCID: PMC6625448 DOI: 10.3892/mmr.2019.10431] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/17/2019] [Indexed: 12/14/2022] Open
Abstract
Short-chain fatty acids (SCFAs; butyrate, propionate and acetate) are metabolites derived from the gut microbiota via dietary fiber fermentation. In colon cancer, treatment with SCFAs, mainly butyrate and propionate, suppresses cell proliferation, migration and invasion. Furthermore, although sodium butyrate is known to induce cell apoptosis in lung cancer, the anticancer effects of sodium propionate (SP) on lung cancer are not well understood. In the present study, SP treatment induced cell cycle arrest, especially in the G2/M phase, and cell apoptosis in the H1299 and H1703 lung cancer cell lines. As determined by reverse transcription-quantitative PCR and western blotting, Survivin and p21 expression levels were significantly affected by SP treatment, suggesting that SP treatment suppressed cell proliferation in these lung cancer cell lines. Thus, it was proposed that the SP-mediated regulation of Survivin and p21 in lung cancer may be applicable to lung cancer therapy.
Collapse
Affiliation(s)
- Kwangkho Kim
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Ohman Kwon
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Tae Young Ryu
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Cho-Rok Jung
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Janghwan Kim
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jeong-Ki Min
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Dae-Soo Kim
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Mi-Young Son
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Hyun-Soo Cho
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| |
Collapse
|