1
|
Nava GM, Madrigal Perez LA. Metabolic profile of the Warburg effect as a tool for molecular prognosis and diagnosis of cancer. Expert Rev Mol Diagn 2022; 22:439-447. [PMID: 35395916 DOI: 10.1080/14737159.2022.2065196] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Adaptations of eukaryotic cells to environmental changes are important for their survival. However, under some circumstances, microenvironmental changes promote that eukaryotic cells utilize a metabolic signature resembling a unicellular organism named the Warburg effect. Most cancer cells share the Warburg effect displaying lactic fermentation and high glucose uptake. The Warburg effect also induces a metabolic rewiring stimulating glutamine consumption and lipid synthesis, also considered cancer hallmarks. Amino acid metabolism alteration due to the Warburg effect increases plasma levels of proline and branched-chain amino acids in several cancer types. Proline and lipids are probably used as electron transfer molecules in carcinogenic cells. In addition, branched-chain amino acids fuel the Krebs cycle, protein synthesis, and signaling in cancer cells. AREAS COVERED This review covers how metabolomics studies describe changes in some metabolites and proteins associated with the Warburg effect and related metabolic pathways. EXPERT OPINION In this review, we analyze the metabolic signature of the Warburg effect and related phenotypes and propose some Warburg effect-related metabolites and proteins (lactate, glucose uptake, glucose transporters, glutamine, branched-chain amino acids, proline, and some lipogenic enzymes) as promising cancer biomarkers.
Collapse
Affiliation(s)
- Gerardo M Nava
- Universidad Autónoma de Querétaro, Cerro de las Campanas, Santiago de Querétaro, Qro, 76010, México
| | - Luis Alberto Madrigal Perez
- Tecnológico Nacional de México/ Instituto Tecnológico Superior de Ciudad Hidalgo, Av. Ing. Carlos Rojas Gutiérrez #2120, Ciudad Hidalgo, Michoacán, 61100, México
| |
Collapse
|
2
|
Genetic Alterations in Mitochondrial DNA Are Complementary to Nuclear DNA Mutations in Pheochromocytomas. Cancers (Basel) 2022; 14:cancers14020269. [PMID: 35053433 PMCID: PMC8773562 DOI: 10.3390/cancers14020269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Mitochondrial DNA (mtDNA) alterations have been reported to play important roles in cancer development and metastasis. However, there is scarce information about pheochromocytomas and paragangliomas (PCCs/PGLs) formation. To determine the potential roles of mtDNA alterations in PCCs/PGLs, we analyzed a panel of 26 nuclear susceptibility genes and the entire mtDNA sequence of 77 human tumors, using NGS. We also performed an analysis of copy-number alterations, large mtDNA deletion, and gene/protein expression. Our results revealed that 53.2% of the tumors harbor a mutation in the susceptibility genes and 16.9% harbor complementary mitochondrial mutations. Large deletions and depletion of mtDNA were found in 26% and 87% of tumors, respectively, accompanied by a reduced expression of the mitochondrial biogenesis markers (PCG1α, NRF1, and TFAM). Furthermore, P62 and LC3a gene expression suggested increased mitophagy, which is linked to mitochondrial dysfunction. These finding suggest a complementarity and a potential contributing role in PCCs/PGLs tumorigenesis. Abstract Background: Somatic mutations, copy-number variations, and genome instability of mitochondrial DNA (mtDNA) have been reported in different types of cancers and are suggested to play important roles in cancer development and metastasis. However, there is scarce information about pheochromocytomas and paragangliomas (PCCs/PGLs) formation. Material: To determine the potential roles of mtDNA alterations in sporadic PCCs/PGLs, we analyzed a panel of 26 nuclear susceptibility genes and the entire mtDNA sequence of seventy-seven human tumors, using next-generation sequencing, and compared the results with normal adrenal medulla tissues. We also performed an analysis of copy-number alterations, large mtDNA deletion, and gene and protein expression. Results: Our results revealed that 53.2% of the tumors harbor a mutation in at least one of the targeted susceptibility genes, and 16.9% harbor complementary mitochondrial mutations. More than 50% of the mitochondrial mutations were novel and predicted pathogenic, affecting mitochondrial oxidative phosphorylation. Large deletions were found in 26% of tumors, and depletion of mtDNA occurred in more than 87% of PCCs/PGLs. The reduction of the mitochondrial number was accompanied by a reduced expression of the regulators that promote mitochondrial biogenesis (PCG1α, NRF1, and TFAM). Further, P62 and LC3a gene expression suggested increased mitophagy, which is linked to mitochondrial dysfunction. Conclusion: The pathogenic role of these finding remains to be shown, but we suggest a complementarity and a potential contributing role in PCCs/PGLs tumorigenesis.
Collapse
|
3
|
Kalsbeek AMF, Chan EFK, Grogan J, Petersen DC, Jaratlerdsiri W, Gupta R, Lyons RJ, Haynes AM, Horvath LG, Kench JG, Stricker PD, Hayes VM. Mutational load of the mitochondrial genome predicts pathological features and biochemical recurrence in prostate cancer. Aging (Albany NY) 2017; 8:2702-2712. [PMID: 27705925 PMCID: PMC5191864 DOI: 10.18632/aging.101044] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/20/2016] [Indexed: 12/31/2022]
Abstract
Prostate cancer management is complicated by extreme disease heterogeneity, which is further limited by availability of prognostic biomarkers. Recognition of prostate cancer as a genetic disease has prompted a focus on the nuclear genome for biomarker discovery, with little attention given to the mitochondrial genome. While it is evident that mitochondrial DNA (mtDNA) mutations are acquired during prostate tumorigenesis, no study has evaluated the prognostic value of mtDNA variation. Here we used next-generation sequencing to interrogate the mitochondrial genomes from prostate tissue biopsies and matched blood of 115 men having undergone a radical prostatectomy for which there was a mean of 107 months clinical follow-up. We identified 74 unique prostate cancer specific somatic mtDNA variants in 50 patients, providing significant expansion to the growing catalog of prostate cancer mtDNA mutations. While no single variant or variant cluster showed recurrence across multiple patients, we observe a significant positive correlation between the total burden of acquired mtDNA variation and elevated Gleason Score at diagnosis and biochemical relapse. We add to accumulating evidence that total acquired genomic burden, rather than specific mtDNA mutations, has diagnostic value. This is the first study to demonstrate the prognostic potential of mtDNA mutational burden in prostate cancer.
Collapse
Affiliation(s)
- Anton M F Kalsbeek
- Laboratory for Human Comparative and Prostate Cancer Genomics, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia.,School of Medical Sciences, University of New South Wales, Randwick, NSW 2031, Australia
| | - Eva F K Chan
- Laboratory for Human Comparative and Prostate Cancer Genomics, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia.,School of Medical Sciences, University of New South Wales, Randwick, NSW 2031, Australia
| | - Judith Grogan
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia.,Central Clinical School, Sydney Medical School, University of Sydney, Camperdown, NSW 2050, Australia.,Cancer Research Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Desiree C Petersen
- Laboratory for Human Comparative and Prostate Cancer Genomics, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia.,School of Medical Sciences, University of New South Wales, Randwick, NSW 2031, Australia
| | - Weerachai Jaratlerdsiri
- Laboratory for Human Comparative and Prostate Cancer Genomics, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Ruta Gupta
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia.,Central Clinical School, Sydney Medical School, University of Sydney, Camperdown, NSW 2050, Australia.,Cancer Research Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Ruth J Lyons
- Laboratory for Human Comparative and Prostate Cancer Genomics, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Anne-Maree Haynes
- Cancer Research Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Lisa G Horvath
- Cancer Research Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia.,Chris O'Brien Lifehouse, Missenden Road, Camperdown, NSW 2050, Australia
| | - James G Kench
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia.,Central Clinical School, Sydney Medical School, University of Sydney, Camperdown, NSW 2050, Australia.,Cancer Research Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Phillip D Stricker
- Department of Urology, St. Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| | - Vanessa M Hayes
- Laboratory for Human Comparative and Prostate Cancer Genomics, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia.,School of Medical Sciences, University of New South Wales, Randwick, NSW 2031, Australia.,Central Clinical School, Sydney Medical School, University of Sydney, Camperdown, NSW 2050, Australia
| |
Collapse
|
4
|
Hertweck KL, Dasgupta S. The Landscape of mtDNA Modifications in Cancer: A Tale of Two Cities. Front Oncol 2017; 7:262. [PMID: 29164061 PMCID: PMC5673620 DOI: 10.3389/fonc.2017.00262] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 10/18/2017] [Indexed: 12/25/2022] Open
Abstract
Mitochondria from normal and cancerous cells represent a tale of two cities, wherein both execute similar processes but with different cellular and molecular effects. Given the number of reviews currently available which describe the functional implications of mitochondrial mutations in cancer, this article focuses on documenting current knowledge in the abundance and distribution of somatic mitochondrial mutations, followed by elucidation of processes which affect the fate of mutations in cancer cells. The conclusion includes an overview of translational implications for mtDNA mutations, as well as recommendations for future research uniting mitochondrial variants and tumorigenesis.
Collapse
Affiliation(s)
- Kate L Hertweck
- Department of Biology, The University of Texas at Tyler, Tyler, TX, United States
| | - Santanu Dasgupta
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| |
Collapse
|
5
|
Kalsbeek AM, Chan EK, Corcoran NM, Hovens CM, Hayes VM. Mitochondrial genome variation and prostate cancer: a review of the mutational landscape and application to clinical management. Oncotarget 2017; 8:71342-71357. [PMID: 29050365 PMCID: PMC5642640 DOI: 10.18632/oncotarget.19926] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 07/26/2017] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer is a genetic disease. While next generation sequencing has allowed for the emergence of molecular taxonomy, classification is restricted to the nuclear genome. Mutations within the maternally inherited mitochondrial genome are known to impact cancer pathogenesis, as a result of disturbances in energy metabolism and apoptosis. With a higher mutation rate, limited repair and increased copy number compared to the nuclear genome, the clinical relevance of mitochondrial DNA (mtDNA) variation requires deeper exploration. Here we provide a systematic review of the landscape of prostate cancer associated mtDNA variation. While the jury is still out on the association between inherited mtDNA variation and prostate cancer risk, we collate a total of 749 uniquely reported prostate cancer associated somatic mutations. Support exists for number of somatic events, extent of heteroplasmy, and rate of recurrence of mtDNA mutations, increasing with disease aggression. While, the predicted pathogenic impact for recurrent prostate cancer associated mutations appears negligible, evidence exists for carcinogenic mutations impacting the cytochrome c oxidase complex and regulating metastasis through elevated reactive oxygen species production. Due to a lack of lethal cohort analyses, we provide additional unpublished data for metastatic disease. Discussing the advantages of mtDNA as a prostate cancer biomarker, we provide a review of current progress of including elevated mtDNA levels, of a large somatic deletion, acquired tRNAs mutations, heteroplasmy and total number of somatic events (mutational load). We confirm via meta-analysis a significant association between mtDNA mutational load and pathological staging at diagnosis or surgery (p < 0.0001).
Collapse
Affiliation(s)
- Anton M.F. Kalsbeek
- Laboratory for Human Comparative and Prostate Cancer Genomics, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Medical Faculty, University of New South Wales, Randwick, New South Wales, Australia
| | - Eva K.F. Chan
- Laboratory for Human Comparative and Prostate Cancer Genomics, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Medical Faculty, University of New South Wales, Randwick, New South Wales, Australia
| | - Niall M. Corcoran
- Australian Prostate Cancer Research Centre Epworth, Richmond, Victoria, Australia
- Departments of Urology and Surgery, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher M. Hovens
- Australian Prostate Cancer Research Centre Epworth, Richmond, Victoria, Australia
- Departments of Urology and Surgery, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Vanessa M. Hayes
- Laboratory for Human Comparative and Prostate Cancer Genomics, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Medical Faculty, University of New South Wales, Randwick, New South Wales, Australia
- Central Clinical School, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
6
|
Arstad C, Refinetti P, Warren D, Giercksky KE, Ekstrøm PO. Scanning the mitochondrial genome for mutations by cycling temperature capillary electrophoresis. Mitochondrial DNA A DNA Mapp Seq Anal 2016; 29:19-30. [PMID: 27728990 DOI: 10.1080/24701394.2016.1233532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
To bypass possible nuclear contamination and to exclusively amplify DNA from the mitochondrion, a set of 23 primers was selected. On the mitochondrial DNA selection fragments, a second set of fragments was used to amplify and identify mutant fractions with a detection limit of 1% . This mutation scanning method analyzed 76% of the mitochondrial genome and was used to examine 94 tumours from different tissues of origin. In all, 87 tumours had one or more mutations, leaving seven samples without observed mutations. Sanger sequencing verified samples carrying mutations with a mutant fraction exceeding 30%. The generated data validate that several regions of the mitochondrial DNA have more mutations than others.
Collapse
Affiliation(s)
- Christian Arstad
- a Department of Tumor Biology , Institute for Cancer Research, The Norwegian Radium Hospital , Oslo , Norway
| | - Paulo Refinetti
- b Chaire de Statistique Appliques , Section de Mathematiques, EPFL , Lausanne , Switzerland
| | - David Warren
- c Department Medical Biochemistry , Institute for Cancer Research, The Norwegian Radium Hospital , Oslo , Norway
| | - Karl-Erik Giercksky
- a Department of Tumor Biology , Institute for Cancer Research, The Norwegian Radium Hospital , Oslo , Norway
| | - Per Olaf Ekstrøm
- a Department of Tumor Biology , Institute for Cancer Research, The Norwegian Radium Hospital , Oslo , Norway
| |
Collapse
|