2
|
Shah N, Khalid U, Kavia R, Batura D. Current advances in the use of artificial intelligence in predicting and managing urological complications. Int Urol Nephrol 2024; 56:3427-3435. [PMID: 38982018 DOI: 10.1007/s11255-024-04149-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Artificial intelligence (AI) has emerged as a promising avenue for improving patient care and surgical outcomes in urological surgery. However, the extent of AI's impact in predicting and managing complications is not fully elucidated. OBJECTIVES We review the application of AI to foresee and manage complications in urological surgery, assess its efficacy, and discuss challenges to its use. METHODS AND MATERIALS A targeted non-systematic literature search was conducted using the PubMed and Google Scholar databases to identify studies on AI in urological surgery and its complications. Evidence from the studies was synthesised. RESULTS Incorporating AI into various facets of urological surgery has shown promising advancements. From preoperative planning to intraoperative guidance, AI is revolutionising the field, demonstrating remarkable proficiency in tasks such as image analysis, decision-making support, and complication prediction. Studies show that AI programmes are highly accurate, increase surgical precision and efficiency, and reduce complications. However, implementation challenges exist in AI errors, human errors, and ethical issues. CONCLUSION AI has great potential in predicting and managing surgical complications of urological surgery. Advancements have been made, but challenges and ethical considerations must be addressed before widespread AI implementation.
Collapse
Affiliation(s)
- Nikhil Shah
- Faculty of Medicine, Medical University of Plovdiv, 4002, Plovdiv, Bulgaria
| | - Usman Khalid
- Faculty of Medicine, Medical University of Plovdiv, 4002, Plovdiv, Bulgaria
| | - Rajesh Kavia
- Department of Urology, London North West University Healthcare NHS Trust, Watford Road, Harrow, London, HA1 3UJ, UK
| | - Deepak Batura
- Department of Urology, London North West University Healthcare NHS Trust, Watford Road, Harrow, London, HA1 3UJ, UK.
| |
Collapse
|
3
|
Mathkor DM, Mathkor N, Bassfar Z, Bantun F, Slama P, Ahmad F, Haque S. Multirole of the internet of medical things (IoMT) in biomedical systems for managing smart healthcare systems: An overview of current and future innovative trends. J Infect Public Health 2024; 17:559-572. [PMID: 38367570 DOI: 10.1016/j.jiph.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/19/2024] Open
Abstract
Internet of Medical Things (IoMT) is an emerging subset of Internet of Things (IoT), often called as IoT in healthcare, refers to medical devices and applications with internet connectivity, is exponentially gaining researchers' attention due to its wide-ranging applicability in biomedical systems for Smart Healthcare systems. IoMT facilitates remote health biomedical system and plays a crucial role within the healthcare industry to enhance precision, reliability, consistency and productivity of electronic devices used for various healthcare purposes. It comprises a conceptualized architecture for providing information retrieval strategies to extract the data from patient records using sensors for biomedical analysis and diagnostics against manifold diseases to provide cost-effective medical solutions, quick hospital treatments, and personalized healthcare. This article provides a comprehensive overview of IoMT with special emphasis on its current and future trends used in biomedical systems, such as deep learning, machine learning, blockchains, artificial intelligence, radio frequency identification, and industry 5.0.
Collapse
Affiliation(s)
- Darin Mansor Mathkor
- Research and Scientific Studies Unit, Department of Nursing, College of Nursing and Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Noof Mathkor
- Department of Pathology, Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Zaid Bassfar
- Department of Information Technology, Faculty of Computers and Information Technology, University of Tabuk, Tabuk, Saudi Arabia
| | - Farkad Bantun
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, Department of Nursing, College of Nursing and Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| |
Collapse
|
4
|
Kwong JCC, Khondker A, Meng E, Taylor N, Kuk C, Perlis N, Kulkarni GS, Hamilton RJ, Fleshner NE, Finelli A, van der Kwast TH, Ali A, Jamal M, Papanikolaou F, Short T, Srigley JR, Colinet V, Peltier A, Diamand R, Lefebvre Y, Mandoorah Q, Sanchez-Salas R, Macek P, Cathelineau X, Eklund M, Johnson AEW, Feifer A, Zlotta AR. Development, multi-institutional external validation, and algorithmic audit of an artificial intelligence-based Side-specific Extra-Prostatic Extension Risk Assessment tool (SEPERA) for patients undergoing radical prostatectomy: a retrospective cohort study. Lancet Digit Health 2023; 5:e435-e445. [PMID: 37211455 DOI: 10.1016/s2589-7500(23)00067-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 02/11/2023] [Accepted: 03/22/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND Accurate prediction of side-specific extraprostatic extension (ssEPE) is essential for performing nerve-sparing surgery to mitigate treatment-related side-effects such as impotence and incontinence in patients with localised prostate cancer. Artificial intelligence (AI) might provide robust and personalised ssEPE predictions to better inform nerve-sparing strategy during radical prostatectomy. We aimed to develop, externally validate, and perform an algorithmic audit of an AI-based Side-specific Extra-Prostatic Extension Risk Assessment tool (SEPERA). METHODS Each prostatic lobe was treated as an individual case such that each patient contributed two cases to the overall cohort. SEPERA was trained on 1022 cases from a community hospital network (Trillium Health Partners; Mississauga, ON, Canada) between 2010 and 2020. Subsequently, SEPERA was externally validated on 3914 cases across three academic centres: Princess Margaret Cancer Centre (Toronto, ON, Canada) from 2008 to 2020; L'Institut Mutualiste Montsouris (Paris, France) from 2010 to 2020; and Jules Bordet Institute (Brussels, Belgium) from 2015 to 2020. Model performance was characterised by area under the receiver operating characteristic curve (AUROC), area under the precision recall curve (AUPRC), calibration, and net benefit. SEPERA was compared against contemporary nomograms (ie, Sayyid nomogram, Soeterik nomogram [non-MRI and MRI]), as well as a separate logistic regression model using the same variables included in SEPERA. An algorithmic audit was performed to assess model bias and identify common patient characteristics among predictive errors. FINDINGS Overall, 2468 patients comprising 4936 cases (ie, prostatic lobes) were included in this study. SEPERA was well calibrated and had the best performance across all validation cohorts (pooled AUROC of 0·77 [95% CI 0·75-0·78] and pooled AUPRC of 0·61 [0·58-0·63]). In patients with pathological ssEPE despite benign ipsilateral biopsies, SEPERA correctly predicted ssEPE in 72 (68%) of 106 cases compared with the other models (47 [44%] in the logistic regression model, none in the Sayyid model, 13 [12%] in the Soeterik non-MRI model, and five [5%] in the Soeterik MRI model). SEPERA had higher net benefit than the other models to predict ssEPE, enabling more patients to safely undergo nerve-sparing. In the algorithmic audit, no evidence of model bias was observed, with no significant difference in AUROC when stratified by race, biopsy year, age, biopsy type (systematic only vs systematic and MRI-targeted biopsy), biopsy location (academic vs community), and D'Amico risk group. According to the audit, the most common errors were false positives, particularly for older patients with high-risk disease. No aggressive tumours (ie, grade >2 or high-risk disease) were found among false negatives. INTERPRETATION We demonstrated the accuracy, safety, and generalisability of using SEPERA to personalise nerve-sparing approaches during radical prostatectomy. FUNDING None.
Collapse
Affiliation(s)
- Jethro C C Kwong
- Division of Urology, Department of Surgery, University of Toronto, Toronto, ON, Canada; Division of Urology, Department of Surgery, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Temerty Centre for AI Research and Education in Medicine, University of Toronto, Toronto, ON, Canada
| | - Adree Khondker
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Eric Meng
- Faculty of Medicine, Queen's University, Kingston, ON, Canada
| | - Nicholas Taylor
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Cynthia Kuk
- Division of Urology, Department of Surgery, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Nathan Perlis
- Division of Urology, Department of Surgery, University of Toronto, Toronto, ON, Canada; Division of Urology, Department of Surgery, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Girish S Kulkarni
- Division of Urology, Department of Surgery, University of Toronto, Toronto, ON, Canada; Division of Urology, Department of Surgery, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Temerty Centre for AI Research and Education in Medicine, University of Toronto, Toronto, ON, Canada
| | - Robert J Hamilton
- Division of Urology, Department of Surgery, University of Toronto, Toronto, ON, Canada; Division of Urology, Department of Surgery, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Neil E Fleshner
- Division of Urology, Department of Surgery, University of Toronto, Toronto, ON, Canada; Division of Urology, Department of Surgery, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Antonio Finelli
- Division of Urology, Department of Surgery, University of Toronto, Toronto, ON, Canada; Division of Urology, Department of Surgery, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Theodorus H van der Kwast
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Laboratory Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Amna Ali
- Institute for Better Health, Trillium Health Partners, Mississauga, ON, Canada
| | - Munir Jamal
- Division of Urology, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Frank Papanikolaou
- Division of Urology, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Thomas Short
- Division of Urology, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - John R Srigley
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Valentin Colinet
- Division of Urology, Department of Surgery, Jules Bordet Institute, Brussels, Belgium
| | - Alexandre Peltier
- Division of Urology, Department of Surgery, Jules Bordet Institute, Brussels, Belgium
| | - Romain Diamand
- Division of Urology, Department of Surgery, Jules Bordet Institute, Brussels, Belgium
| | - Yolene Lefebvre
- Department of Medical Imagery, Jules Bordet Institute, Brussels, Belgium
| | - Qusay Mandoorah
- Division of Urology, Department of Surgery, L'Institut Mutualiste Montsouris, Paris, France
| | - Rafael Sanchez-Salas
- Division of Urology, Department of Surgery, L'Institut Mutualiste Montsouris, Paris, France
| | - Petr Macek
- Division of Urology, Department of Surgery, L'Institut Mutualiste Montsouris, Paris, France
| | - Xavier Cathelineau
- Division of Urology, Department of Surgery, L'Institut Mutualiste Montsouris, Paris, France
| | - Martin Eklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Alistair E W Johnson
- Temerty Centre for AI Research and Education in Medicine, University of Toronto, Toronto, ON, Canada; Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada; Vector Institute, Toronto, ON, Canada
| | - Andrew Feifer
- Division of Urology, Department of Surgery, University of Toronto, Toronto, ON, Canada; Institute for Better Health, Trillium Health Partners, Mississauga, ON, Canada
| | - Alexandre R Zlotta
- Division of Urology, Department of Surgery, University of Toronto, Toronto, ON, Canada; Division of Urology, Department of Surgery, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Division of Urology, Department of Surgery, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada.
| |
Collapse
|
5
|
Ladbury C, Zarinshenas R, Semwal H, Tam A, Vaidehi N, Rodin AS, Liu A, Glaser S, Salgia R, Amini A. Utilization of model-agnostic explainable artificial intelligence frameworks in oncology: a narrative review. Transl Cancer Res 2022; 11:3853-3868. [PMID: 36388027 PMCID: PMC9641128 DOI: 10.21037/tcr-22-1626] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022]
Abstract
Background and Objective Machine learning (ML) models are increasingly being utilized in oncology research for use in the clinic. However, while more complicated models may provide improvements in predictive or prognostic power, a hurdle to their adoption are limits of model interpretability, wherein the inner workings can be perceived as a "black box". Explainable artificial intelligence (XAI) frameworks including Local Interpretable Model-agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP) are novel, model-agnostic approaches that aim to provide insight into the inner workings of the "black box" by producing quantitative visualizations of how model predictions are calculated. In doing so, XAI can transform complicated ML models into easily understandable charts and interpretable sets of rules, which can give providers with an intuitive understanding of the knowledge generated, thus facilitating the deployment of such models in routine clinical workflows. Methods We performed a comprehensive, non-systematic review of the latest literature to define use cases of model-agnostic XAI frameworks in oncologic research. The examined database was PubMed/MEDLINE. The last search was run on May 1, 2022. Key Content and Findings In this review, we identified several fields in oncology research where ML models and XAI were utilized to improve interpretability, including prognostication, diagnosis, radiomics, pathology, treatment selection, radiation treatment workflows, and epidemiology. Within these fields, XAI facilitates determination of feature importance in the overall model, visualization of relationships and/or interactions, evaluation of how individual predictions are produced, feature selection, identification of prognostic and/or predictive thresholds, and overall confidence in the models, among other benefits. These examples provide a basis for future work to expand on, which can facilitate adoption in the clinic when the complexity of such modeling would otherwise be prohibitive. Conclusions Model-agnostic XAI frameworks offer an intuitive and effective means of describing oncology ML models, with applications including prognostication and determination of optimal treatment regimens. Using such frameworks presents an opportunity to improve understanding of ML models, which is a critical step to their adoption in the clinic.
Collapse
Affiliation(s)
- Colton Ladbury
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Reza Zarinshenas
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Hemal Semwal
- Departments of Bioengineering and Integrated Biology and Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Andrew Tam
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Andrei S Rodin
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - An Liu
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Scott Glaser
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Ravi Salgia
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Arya Amini
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|