1
|
Li M, Armelloni S, Mattinzoli D, Ikehata M, Chatziantoniou C, Alfieri C, Molinari P, Chadjichristos CE, Malvica S, Castellano G. Crosstalk mechanisms between glomerular endothelial cells and podocytes in renal diseases and kidney transplantation. Kidney Res Clin Pract 2024; 43:47-62. [PMID: 38062623 PMCID: PMC10846991 DOI: 10.23876/j.krcp.23.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 02/06/2024] Open
Abstract
The glomerular filtration barrier (GFB), composed of endothelial cells, glomerular basement membrane, and podocytes, is a unique structure for filtering blood while detaining plasma proteins according to size and charge selectivity. Structurally, the fenestrated endothelial cells, which align the capillary loops, are in close proximity to mesangial cells. Podocytes are connected by specialized intercellular junctions known as slit diaphragms and are separated from the endothelial compartment by the glomerular basement membrane. Podocyte-endothelial cell communication or crosstalk is required for the development and maintenance of an efficient filtration process in physiological conditions. In pathological situations, communication also has an essential role in promoting or delaying disease progression. Podocytes and endothelial cells can secrete signaling molecules, which act as crosstalk effectors and, through binding to their target receptors, can trigger bidirectional paracrine or autocrine signal transduction. Moreover, the emerging evidence of extracellular vesicles derived from various cell types engaging in cell communication has also been reported. In this review, we summarize the principal pathways involved in the development and maintenance of the GFB and the progression of kidney disease, particularly in kidney transplantation.
Collapse
Affiliation(s)
- Min Li
- Renal Research Laboratory, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Silvia Armelloni
- Renal Research Laboratory, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Deborah Mattinzoli
- Renal Research Laboratory, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Masami Ikehata
- Renal Research Laboratory, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Christos Chatziantoniou
- Unité Mixte de Recherche Scientifique 1155, Institut National de la Santé et de la Recherche Médicale, Hôpital Tenon, Paris, France
- Faculty of Medicine, Sorbonne University, Paris, France
| | - Carlo Alfieri
- Department of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Paolo Molinari
- Department of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Christos E. Chadjichristos
- Unité Mixte de Recherche Scientifique 1155, Institut National de la Santé et de la Recherche Médicale, Hôpital Tenon, Paris, France
- Faculty of Medicine, Sorbonne University, Paris, France
| | - Silvia Malvica
- Department of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Castellano
- Department of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
2
|
Adjunctive therapy with the Tie2 agonist Vasculotide reduces pulmonary permeability in Streptococcus pneumoniae infected and mechanically ventilated mice. Sci Rep 2022; 12:15531. [PMID: 36109537 PMCID: PMC9478100 DOI: 10.1038/s41598-022-19560-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 08/31/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractCommunity acquired pneumonia, mainly caused by Streptococcus pneumoniae (S.pn.), is a common cause of death worldwide. Despite adequate antibiotic therapy, pneumococcal pneumonia can induce pulmonary endothelial hyperpermeability leading to acute lung injury, which often requires mechanical ventilation (MV) causing ventilator-induced lung injury (VILI). Endothelial stabilization is mediated by angiopoietin-1 induced Tie2 activation. PEGylated (polyethylene glycol) Tie2-agonist Vasculotide (VT) mimics Angiopietin-1 effects. Recently, VT has been shown to reduce pulmonary hyperpermeability in murine pneumococcal pneumonia. The aim of this study was to determine whether VT reduces lung damage in S.pn. infected and mechanically ventilated mice. Pulmonary hyperpermeability, immune response and bacterial load were quantified in S.pn. infected mice treated with Ampicillin + /−VT and undergoing six hours of MV 24 h post infection. Histopathological lung changes, Tie2-expression and -phosphorylation were evaluated. VT did not alter immune response or bacterial burden, but interestingly combination treatment with ampicillin significantly reduced pulmonary hyperpermeability, histological lung damage and edema formation. Tie2-mRNA expression was reduced by S.pn. infection and/or MV but not restored by VT. Moreover, Tie2 phosphorylation was not affected by VT. These findings indicate that VT may be a promising adjunctive treatment option for prevention of VILI in severe pneumococcal pneumonia.
Collapse
|
3
|
Culmone L, Powell B, Landschoot-Ward J, Zacharek A, Gao H, Findeis EL, Malik A, Lu M, Chopp M, Venkat P. Treatment With an Angiopoietin-1 Mimetic Peptide Improves Cognitive Outcome in Rats With Vascular Dementia. Front Cell Neurosci 2022; 16:869710. [PMID: 35602559 PMCID: PMC9120946 DOI: 10.3389/fncel.2022.869710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/22/2022] [Indexed: 12/01/2022] Open
Abstract
Background and Purpose Vascular dementia (VaD) is a complex neurodegenerative disease affecting cognition and memory. There is a lack of approved pharmacological treatments specifically for VaD. In this study, we investigate the therapeutic effects of AV-001, a Tie2 receptor agonist, in middle-aged rats subjected to a multiple microinfarct (MMI) model of VaD. Methods Male, 10-12 month-old, Wistar rats were employed. The following experimental groups were used: Sham, MMI, MMI+1 μg/Kg AV-001, MMI+3 μg/Kg AV-001, MMI+6 μg/Kg AV-001. AV-001 treatment was initiated at 1 day after MMI and administered once daily via intraperitoneal injection. An investigator blinded to the experimental groups conducted a battery of neuro-cognitive tests including modified neurological severity score (mNSS) test, novel object recognition test, novel odor recognition test, three chamber social interaction test, and Morris water maze test. Rats were sacrificed at 6 weeks after MMI. Results There was no mortality observed after 1, 3, or 6 μg/Kg AV-001 treatment in middle-aged rats subjected to MMI. AV-001 treatment (1, 3, or 6 μg/Kg) does not significantly alter blood pressure or heart rate at 6 weeks after MMI compared to baseline values or the MMI control group. Treatment of MMI with 1 or 3 μg/Kg AV-001 treatment does not significantly alter body weight compared to Sham or MMI control group. While 6 μg/Kg AV-001 treated group exhibit significantly lower body weight compared to Sham and MMI control group, the weight loss is evident starting at 1 day after MMI when treatment was initiated and is not significantly different compared to its baseline values at day 0 or day 1 after MMI. AV-001 treatment significantly decreases serum alanine aminotransferase, serum creatinine, and serum troponin I levels compared to the MMI control group; however, all values are within normal range. MMI induces mild neurological deficits in middle-aged rats indicated by low mNSS scores (<6 on a scale of 0-18). Compared to control MMI group, 1 μg/Kg AV-001 treatment group did not exhibit significantly different mNSS scores, while 3 and 6 μg/Kg AV-001 treatment induced significantly worse mNSS scores on days 21-42 and 14-42 after MMI, respectively. MMI in middle-aged rats induces significant cognitive impairment including short-term memory loss, long-term memory loss, reduced preference for social novelty and impaired spatial learning and memory compared to sham control rats. Rats treated with 1 μg/Kg AV-001 exhibit significantly improved short-term and long-term memory, increased preference for social novelty, and improved spatial learning and memory compared to MMI rats. Treatment with 3 μg/Kg AV-001 improves short-term memory and preference for social novelty but does not improve long-term memory or spatial learning and memory compared to MMI rats. Treatment with 6 μg/Kg AV-001 improves only long-term memory compared to MMI rats. Thus, 1 μg/Kg AV-001 treatment was selected as an optimal dose. Treatment of middle-aged rats subjected to MMI with 1 μg/Kg AV-001 significantly increases axon density, myelin density and myelin thickness in the corpus callosum, as well as increases synaptic protein expression, neuronal branching and dendritic spine density in the cortex, oligodendrocytes and oligodendrocyte progenitor cell number in the cortex and striatum and promotes neurogenesis in the subventricular zone compared to control MMI rats. Conclusions In this study, we present AV-001 as a novel therapeutic agent to improve cognitive function and reduce white matter injury in middle aged-rats subjected to a MMI model of VaD. Treatment of MMI with 1 μg/Kg AV-001 significantly improves cognitive function, and increases axon density, remyelination and neuroplasticity in the brain of middle-aged rats.
Collapse
Affiliation(s)
- Lauren Culmone
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Brianna Powell
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | | | - Alex Zacharek
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Huanjia Gao
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | | | - Ayesha Malik
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Mei Lu
- Public Health Sciences, Henry Ford Hospital, Detroit, MI, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
| | - Poornima Venkat
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| |
Collapse
|
4
|
Lynch M, Heinen S, Markham-Coultes K, O'Reilly M, Van Slyke P, Dumont DJ, Hynynen K, Aubert I. Vasculotide restores the blood-brain barrier after focused ultrasound-induced permeability in a mouse model of Alzheimer's disease. Int J Med Sci 2021; 18:482-493. [PMID: 33390817 PMCID: PMC7757142 DOI: 10.7150/ijms.36775] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022] Open
Abstract
Focused ultrasound (FUS) is used to locally and transiently induce blood-brain barrier (BBB) permeability, allowing targeted drug delivery to the brain. The purpose of the current study is to evaluate the potential of Vasculotide to accelerate the recovery of the BBB following FUS disruption in the TgCRND8 mouse model of amyloidosis, characteristic of Alzheimer's disease (AD). Accelerating the restoration of the BBB post-FUS would represent an additional safety procedure, which could be beneficial for clinical applications. Methods: TgCRND8 mice and their non-transgenic littermates were treated with Vasculotide (250 ng, intraperitoneal) every 48 hours for 3 months. BBB permeability was induced using FUS, in presence of intravenously injected microbubbles, in TgCRND8 and non-transgenic mice, and confirmed at time 0 by MRI enhancement using the contrast agent gadolinium. BBB closure was assessed at 6, 12 and 20 hours by MRI. In a separate cohort of animals, BBB closure was assessed at 24-hours post-FUS using Evans blue injected intravenously and followed by histological evaluation. Results: Chronic Vasculotide administration significantly reduces the ultra-harmonic threshold required for FUS-induced BBB permeability in the TgCRND8 mice. In addition, Vasculotide treatment led to a faster restoration of the BBB following FUS in TgCRND8 mice. BBB closure after FUS is not significantly different between TgCRND8 and non-transgenic mice. BBB permeability was assessed by gadolinium up to 20-hours post-FUS, demonstrating 87% closure in Vasculotide treated TgCRND8 mice, as opposed to 52% in PBS treated TgCRND8 mice, 58% in PBS treated non-transgenic mice, and 74% in Vasculotide treated non-transgenic mice. In both TgCRND8 mice and non-transgenic littermates the BBB was impermeable to Evans blue dye at 24-hours post-FUS. Conclusion: Vasculotide reduces the pressure required for microbubble ultra-harmonic onset for FUS-induced BBB permeability and it accelerates BBB restoration in a mouse model of amyloidosis, suggesting its potential clinical utility to promote vascular health, plasticity and repair in AD.
Collapse
Affiliation(s)
- Madelaine Lynch
- Biological Sciences, Sunnybrook Research Institute, 2075 Bayview Ave. Toronto, ON, Canada M4N 3M5
- Laboratory Medicine & Pathobiology, University of Toronto, 27 King's College Circle, Toronto, ON, Canada, M5S 1A1
| | - Stefan Heinen
- Biological Sciences, Sunnybrook Research Institute, 2075 Bayview Ave. Toronto, ON, Canada M4N 3M5
| | - Kelly Markham-Coultes
- Biological Sciences, Sunnybrook Research Institute, 2075 Bayview Ave. Toronto, ON, Canada M4N 3M5
| | - Meaghan O'Reilly
- Physical Sciences, Sunnybrook Research Institute, 2075 Bayview Ave. Toronto, ON, Canada M4N 3M5
- Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, Canada, M5G 1L7
| | - Paul Van Slyke
- Vasomune Therapeutics, 661 University Ave #465, Toronto, ON M5G 1M1
| | - Daniel J. Dumont
- Biological Sciences, Sunnybrook Research Institute, 2075 Bayview Ave. Toronto, ON, Canada M4N 3M5
- Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, Canada, M5G 1L7
| | - Kullervo Hynynen
- Physical Sciences, Sunnybrook Research Institute, 2075 Bayview Ave. Toronto, ON, Canada M4N 3M5
- Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, Canada, M5G 1L7
| | - Isabelle Aubert
- Biological Sciences, Sunnybrook Research Institute, 2075 Bayview Ave. Toronto, ON, Canada M4N 3M5
- Laboratory Medicine & Pathobiology, University of Toronto, 27 King's College Circle, Toronto, ON, Canada, M5S 1A1
| |
Collapse
|
5
|
Calcium dobesilate reduces VEGF signaling by interfering with heparan sulfate binding site and protects from vascular complications in diabetic mice. PLoS One 2020; 15:e0218494. [PMID: 31935212 PMCID: PMC6959593 DOI: 10.1371/journal.pone.0218494] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/21/2019] [Indexed: 01/09/2023] Open
Abstract
Inhibiting vascular endothelial growth factor (VEGF) is a therapeutic option in diabetic microangiopathy. However, VEGF is needed at physiological concentrations to maintain glomerular integrity; complete VEGF blockade has deleterious effects on glomerular structure and function. Anti-VEGF therapy in diabetes raises the challenge of reducing VEGF-induced pathology without accelerating endothelial cell injury. Heparan sulfate (HS) act as a co-receptor for VEGF. Calcium dobesilate (CaD) is a small molecule with vasoprotective properties that has been used for the treatment of diabetic microangiopathy. Preliminary evidence suggests that CaD interferes with HS binding sites of fibroblast growth factor. We therefore tested the hypotheses that (1) CaD inhibits VEGF signaling in endothelial cells, (2) that this effect is mediated via interference between CaD and HS, and (3) that CaD ameliorates diabetic nephropathy in a streptozotocin-induced diabetic mouse model by VEGF inhibition. We found that CaD significantly inhibited VEGF165-induced endothelial cell migration, proliferation, and permeability. CaD significantly inhibited VEGF165-induced phosphorylation of VEGFR-2 and suppressed the activity of VEGFR-2 mediated signaling cascades. The effects of CaD in vitro were abrogated by heparin, suggesting the involvement of heparin-like domain in the interaction with CaD. In addition, VEGF121, an isoform which does not bind to heparin, was not inhibited by CaD. Using the proximity ligation approach, we detected inhibition of interaction in situ between HS and VEGF and between VEGF and VEGFR-2. Moreover, CaD reduced VEGF signaling in mice diabetic kidneys and ameliorated diabetic nephropathy and neuropathy, suggesting CaD as a VEGF inhibitor without the negative effects of complete VEGF blockade and therefore could be useful as a strategy in treating diabetic nephropathy.
Collapse
|
6
|
Abstract
Systemic inflammation is a hallmark of commonly encountered diseases ranging from bacterial sepsis to sterile syndromes such as major trauma. Derangements in the host vasculature contribute to the cardinal manifestations of sepsis in profound ways. Recent studies of control pathways regulating the vascular endothelium have illuminated how this single cell layer toggles between quiescence and activation to affect the development of shock and multiorgan dysfunction. This article focuses on one such control pathway, the Tie2 receptor and its ligands the angiopoietins, to describe a growing body of genetic, biochemical, mechanistic, and human studies that implicate Tie2 as a critical switch. In health, activated Tie2 maintains the endothelium in a quiescent state characterized by dynamic barrier function and antiadhesion against circulating leukocytes. In sepsis and related diseases, expression of the angiopoietins becomes markedly imbalanced and Tie2 signaling is greatly attenuated. These rapid molecular changes potentiate pathophysiologic responses throughout the body, resulting in injurious vascular leakage and organ inflammation. The Tie2 axis, therefore, may be a promising avenue for future translational studies.
Collapse
Affiliation(s)
- Samir M Parikh
- Division of Nephrology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|