1
|
Tateishi R, Ogawa-Kishida N, Fujii N, Nagata Y, Ohtsubo Y, Sasaki S, Takashima K, Kaneko T, Higashitani A. Increase of secondary metabolites in sweet basil (Ocimum basilicum L.) leaves by exposure to N 2O 5 with plasma technology. Sci Rep 2024; 14:12759. [PMID: 38834771 DOI: 10.1038/s41598-024-63508-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024] Open
Abstract
Exposure to N2O5 generated by plasma technology activates immunity in Arabidopsis through tryptophan metabolites. However, little is known about the effects of N2O5 exposure on other plant species. Sweet basil synthesizes many valuable secondary metabolites in its leaves. Therefore, metabolomic analyses were performed at three different exposure levels [9.7 (Ex1), 19.4 (Ex2) and 29.1 (Ex3) μmol] to assess the effects of N2O5 on basil leaves. As a result, cinnamaldehyde and phenolic acids increased with increasing doses. Certain flavonoids, columbianetin, and caryophyllene oxide increased with lower Ex1 exposure, cineole and methyl eugenol increased with moderate Ex2 exposure and L-glutathione GSH also increased with higher Ex3 exposure. Furthermore, gene expression analysis by quantitative RT-PCR showed that certain genes involved in the syntheses of secondary metabolites and jasmonic acid were significantly up-regulated early after N2O5 exposure. These results suggest that N2O5 exposure increases several valuable secondary metabolites in sweet basil leaves via plant defense responses in a controllable system.
Collapse
Affiliation(s)
- Rie Tateishi
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | | | - Nobuharu Fujii
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Yuji Nagata
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Yoshiyuki Ohtsubo
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Shota Sasaki
- Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Keisuke Takashima
- Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Toshiro Kaneko
- Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Atsushi Higashitani
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan.
| |
Collapse
|
2
|
Shi H, Wu X, Zhu Y, Jiang T, Wang Z, Li X, Liu J, Zhang Y, Chen F, Gao J, Xu X, Zhang G, Xiao N, Feng X, Zhang P, Wu Y, Li A, Chen P, Li X. RefMetaPlant: a reference metabolome database for plants across five major phyla. Nucleic Acids Res 2024; 52:D1614-D1628. [PMID: 37953341 PMCID: PMC10767953 DOI: 10.1093/nar/gkad980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023] Open
Abstract
Plants are unique with tremendous chemical diversity and metabolic complexity, which is highlighted by estimates that green plants collectively produce metabolites numbering in the millions. Plant metabolites play crucial roles in all aspects of plant biology, like growth, development, stress responses, etc. However, the lack of a reference metabolome for plants, and paucity of high-quality standard compound spectral libraries and related analytical tools, have hindered the discovery and functional study of phytochemicals in plants. Here, by leveraging an advanced LC-MS platform, we generated untargeted mass spectral data from >150 plant species collected across the five major phyla. Using a self-developed computation protocol, we constructed reference metabolome for 153 plant species. A 'Reference Metabolome Database for Plants' (RefMetaPlant) was built to encompass the reference metabolome, integrated standard compound mass spectral libraries for annotation, and related query and analytical tools like 'LC-MS/MS Query', 'RefMetaBlast' and 'CompoundLibBlast' for searches and profiling of plant metabolome and metabolite identification. Analogous to a reference genome in genomic research, RefMetaPlant provides a powerful platform to support plant genome-scale metabolite analysis to promote knowledge/data sharing and collaboration in the field of metabolomics. RefMetaPlant is freely available at https://www.biosino.org/RefMetaDB/.
Collapse
Affiliation(s)
- Han Shi
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xueting Wu
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yan Zhu
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Tao Jiang
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | | | - Xuetong Li
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jianju Liu
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, China
| | | | - Feng Chen
- Agronomy College, Henan Agricultural University, Zhengzhou, China
| | - Jinshan Gao
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Xiaoyan Xu
- Core Facility Center, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Guoqing Zhang
- National Genomics Data Center & Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Ning Xiao
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Peng Zhang
- University of Chinese Academy of Sciences, Beijing, China
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yongrui Wu
- University of Chinese Academy of Sciences, Beijing, China
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Aihong Li
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, China
| | - Ping Chen
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xuan Li
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Fukushima A, Takahashi M, Nagasaki H, Aono Y, Kobayashi M, Kusano M, Saito K, Kobayashi N, Arita M. Development of RIKEN Plant Metabolome MetaDatabase. PLANT & CELL PHYSIOLOGY 2022; 63:433-440. [PMID: 34918130 PMCID: PMC8917833 DOI: 10.1093/pcp/pcab173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
The advancement of metabolomics in terms of techniques for measuring small molecules has enabled the rapid detection and quantification of numerous cellular metabolites. Metabolomic data provide new opportunities to gain a deeper understanding of plant metabolism that can improve the health of both plants and humans that consume them. Although major public repositories for general metabolomic data have been established, the community still has shortcomings related to data sharing, especially in terms of data reanalysis, reusability and reproducibility. To address these issues, we developed the RIKEN Plant Metabolome MetaDatabase (RIKEN PMM, http://metabobank.riken.jp/pmm/db/plantMetabolomics), which stores mass spectrometry-based (e.g. gas chromatography-MS-based) metabolite profiling data of plants together with their detailed, structured experimental metadata, including sampling and experimental procedures. Our metadata are described as Linked Open Data based on the Resource Description Framework using standardized and controlled vocabularies, such as the Metabolomics Standards Initiative Ontology, which are to be integrated with various life and biomedical science data using the World Wide Web. RIKEN PMM implements intuitive and interactive operations for plant metabolome data, including raw data (netCDF format), mass spectra (NIST MSP format) and metabolite annotations. The feature is suitable not only for biologists who are interested in metabolomic phenotypes, but also for researchers who would like to investigate life science in general through plant metabolomic approaches.
Collapse
Affiliation(s)
- Atsushi Fukushima
- Metabolome Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Mikiko Takahashi
- Metabolome Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Hideki Nagasaki
- Metabolome Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Yusuke Aono
- Degree Programs in Life and Earth Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Makoto Kobayashi
- Metabolome Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Miyako Kusano
- Metabolome Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
- Faculty of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuki Saito
- Metabolome Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Norio Kobayashi
- Metabolome Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
- Data Knowledge Organization Unit, RIKEN Information R&D and Strategy Headquarters, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masanori Arita
- Metabolome Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
- Bioinformation and DDBJ Center, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
4
|
Patel MK, Pandey S, Kumar M, Haque MI, Pal S, Yadav NS. Plants Metabolome Study: Emerging Tools and Techniques. PLANTS (BASEL, SWITZERLAND) 2021; 10:2409. [PMID: 34834772 PMCID: PMC8621461 DOI: 10.3390/plants10112409] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 05/06/2023]
Abstract
Metabolomics is now considered a wide-ranging, sensitive and practical approach to acquire useful information on the composition of a metabolite pool present in any organism, including plants. Investigating metabolomic regulation in plants is essential to understand their adaptation, acclimation and defense responses to environmental stresses through the production of numerous metabolites. Moreover, metabolomics can be easily applied for the phenotyping of plants; and thus, it has great potential to be used in genome editing programs to develop superior next-generation crops. This review describes the recent analytical tools and techniques available to study plants metabolome, along with their significance of sample preparation using targeted and non-targeted methods. Advanced analytical tools, like gas chromatography-mass spectrometry (GC-MS), liquid chromatography mass-spectroscopy (LC-MS), capillary electrophoresis-mass spectrometry (CE-MS), fourier transform ion cyclotron resonance-mass spectrometry (FTICR-MS) matrix-assisted laser desorption/ionization (MALDI), ion mobility spectrometry (IMS) and nuclear magnetic resonance (NMR) have speed up precise metabolic profiling in plants. Further, we provide a complete overview of bioinformatics tools and plant metabolome database that can be utilized to advance our knowledge to plant biology.
Collapse
Affiliation(s)
- Manish Kumar Patel
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Sonika Pandey
- Independent Researcher, Civil Line, Fathepur 212601, India;
| | - Manoj Kumar
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel;
| | - Md Intesaful Haque
- Fruit Tree Science Department, Newe Ya’ar Research Center, Agriculture Research Organization, Volcani Center, Ramat Yishay 3009500, Israel;
| | - Sikander Pal
- Plant Physiology Laboratory, Department of Botany, University of Jammu, Jammu 180006, India;
| | - Narendra Singh Yadav
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|