1
|
Birnbaum Y. Glucagon-Like Peptide-1 Receptor Agonists for Abdominal Aortic Aneurysm? Cardiovasc Drugs Ther 2025; 39:13-14. [PMID: 39531113 DOI: 10.1007/s10557-024-07647-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Affiliation(s)
- Yochai Birnbaum
- John S. Dunn Chair in Cardiology Research and Education, The Section of Cardiology, The Department of Medicine, Baylor College of Medicine, 7200 Cambridge Street, MS BCM620, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Chen J, Hu L, Liu Z. Medical treatments for abdominal aortic aneurysm: an overview of clinical trials. Expert Opin Investig Drugs 2024; 33:979-992. [PMID: 38978286 DOI: 10.1080/13543784.2024.2377747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
INTRODUCTION Abdominal aortic aneurysm is a progressive, segmental, abdominal aortic dilation associated with a high mortality rate. Abdominal aortic aneurysms with diameters larger than 55 mm are associated with a high risk of rupture, and the most effective treatment options are surgical repair. Close observation and lifestyle adjustments are recommended for smaller abdominal aortic aneurysms with lower rupture risk. The development of medical therapies that limit or prevent the progression, expansion, and eventual rupture of abdominal aortic aneurysms remains an unmet clinical need. AREAS COVERED This review provides an overview of completed and ongoing clinical trials examining the efficacies of various drug classes, including antibiotics, antihypertensive drugs, hypolipidemic drugs, hypoglycemic drugs, and other potential therapies for abdominal aortic aneurysms. A search of PubMed, Web of Science, Clinical Trials, and another six clinical trial registries was conducted in January 2024. EXPERT OPINION None of the drugs have enough evidence to indicate that they can effectively inhibit the dilation of abdominal aortic aneurysm. More clinical trial data is required to support the efficacy of propranolol. Future research should also explore different drug delivery mechanisms, such as nanoparticles, to elevate drug concentration at the aneurysm wall.
Collapse
Affiliation(s)
- Jinyi Chen
- Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lanting Hu
- Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenjie Liu
- Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Identification of Novel Plasma Biomarkers for Abdominal Aortic Aneurysm by Protein Array Analysis. Biomolecules 2022; 12:biom12121853. [PMID: 36551281 PMCID: PMC9775419 DOI: 10.3390/biom12121853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a potentially life-threatening disease that is common in the aging population. Currently, there are no approved diagnostic biomarkers or therapeutic drugs for AAA. We aimed to identify novel plasma biomarkers or potential therapeutic targets for AAA using a high-throughput protein array-based method. Proteomics expression profiles were investigated in plasma from AAA patients and healthy controls (HC) using 440-cytokine protein array analysis. Several promising biomarkers were further validated in independent cohorts using enzyme-linked immunosorbent assay (ELISA). Thirty-nine differentially expressed plasma proteins were identified between AAA and HC. Legumain (LGMN) was significantly higher in AAA patients and was validated in another large cohort. Additionally, "AAA without diabetes" (AAN) patients and "AAA complicated with type 2 diabetes mellitus" (AAM) patients had different cytokine expression patterns in their plasma, and nine plasma proteins were differentially expressed among the AAN, AAM, and HC subjects. Delta-like protein 1 (DLL1), receptor tyrosine-protein kinase erbB-3 (ERBB3), and dipeptidyl peptidase 4 (DPPIV) were significantly higher in AAM than in AAN. This study identified several promising plasma biomarkers of AAA. Their role as therapeutic targets for AAA warrants further investigation.
Collapse
|
4
|
Chen Q, Jiang D, Shan Z. The influence of dipeptidyl peptidase-4 inhibitor on the progression of type B intramural hematoma. Front Cardiovasc Med 2022; 9:969357. [PMID: 36330007 PMCID: PMC9623157 DOI: 10.3389/fcvm.2022.969357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/30/2022] [Indexed: 11/30/2022] Open
Abstract
Objectives Investigating whether dipeptidyl peptidase-4 inhibitors (DPP4i) could influence the progression of type B intramural hematoma (IMHB) in patients with diabetes mellitus (DM). Materials and methods Uncomplicated IMHB patients were matched by age, sex, and body mass index. Cox proportional hazard models were constructed to identify risk factors. A Kaplan–Meier survival analysis was used to estimate all-cause and aorta-related mortality. Results Ninety-six matched IMHB patients were divided into Group A (n = 32, IMHB patients without DM), Group B (n = 32, IMHB patients with DMreceiving oral antidiabetic drugs [without DPP4i]) and Group C (n = 32, IMHB patients with DM receiving oral antidiabetic drugs [with DPP4i]). Group C had the lowest rate of aorta-related adverse events (3.1%), aorta-related mortality (0.0%) and reintervention (3.1%). Cox proportional hazard models revealed that a lower eosinophil count (per 0.1, HR, 0.48; 95% CI, 0.29–0.79, P = 0.004) and a higher neutrophil to lymphocyte ratio (NLR) (HR, 1.13; 95% CI, 1.05–1.21, P = 0.001) were associated with higher occurrences of aorta-related adverse events. A lower eosinophil count (per 0.1, HR, 0.40; 95% CI, 0.18–0.89, P = 0.025) and a higher NLR (HR, 1.19; 95% CI, 1.08–1.32, P = 0.001) were also associated with increased aorta-related mortality. Conclusion DPP4i administration in DM patients with IMHB was associated with lower aorta-related mortality and more benign progression than in those who did not receive DPP4i or those without DM. Furthermore, a higher eosinophil count and a lower NLR ratio are potential protective factors that may explain the potential therapeutic benefit of DPP4i.
Collapse
Affiliation(s)
- Qu Chen
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Dandan Jiang
- Department of Respiratory Medicine, Xinglin Branch of the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zhonggui Shan
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- *Correspondence: Zhonggui Shan,
| |
Collapse
|
5
|
Skotsimara G, Antonopoulos A, Oikonomou E, Papastamos C, Siasos G, Tousoulis D. Aortic Wall Inflammation in the Pathogenesis, Diagnosis and Treatment of Aortic Aneurysms. Inflammation 2022; 45:965-976. [PMID: 35076833 DOI: 10.1007/s10753-022-01626-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/08/2022] [Accepted: 01/12/2022] [Indexed: 12/18/2022]
Abstract
The role of inflammation in the development of aortic aneurysms is emerging, along with the potential diagnostic and therapeutical potential of this correlation. Abdominal aorta aneurysms have a strong inflammatory substrate since atherosclerosis, which is undoubtedly linked to inflammation, is also a predisposing factor to their formation. Yet, data have emerged that the development of thoracic aorta aneurysms involves several inflammatory pathways, although they were previously referred to as a non-inflammatory disease. Since aortic aneurysms are mainly asymptomatic during their clinical course until their complications-which may be lethal-serum biomarkers for their early diagnosis are a necessity. Studies highlight that inflammation molecules may have a critical role in that direction. In addition, imaging techniques that trace aortic wall inflammation are developed in order to predict aneurysm growth rates and sites vulnerable of rupture. Several anti-inflammatory agents have been also studied in animal models and clinical trials for the treatment of aortic aneurysms. This review highlights the role of inflammation in pathogenesis, diagnosis and treatment of aortic aneurysms.
Collapse
Affiliation(s)
- Georgia Skotsimara
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias 114, PO 11528, Athens, Greece
| | - Alexios Antonopoulos
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias 114, PO 11528, Athens, Greece.
| | - Evangelos Oikonomou
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias 114, PO 11528, Athens, Greece
| | - Charalampos Papastamos
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias 114, PO 11528, Athens, Greece
| | - Gerasimos Siasos
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias 114, PO 11528, Athens, Greece
| | - Dimitrios Tousoulis
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias 114, PO 11528, Athens, Greece
| |
Collapse
|
6
|
Ngetich E, Lapolla P, Chandrashekar A, Handa A, Lee R. The role of dipeptidyl peptidase-IV in abdominal aortic aneurysm pathogenesis: A systematic review. Vasc Med 2021; 27:77-87. [PMID: 34392748 PMCID: PMC8808362 DOI: 10.1177/1358863x211034574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Abdominal aortic aneurysm (AAA) is an important vascular disease carrying significant mortality implications due to the risk of aneurysm rupture. Current management relies exclusively on surgical repair as there is no effective medical therapy. A key element of AAA pathogenesis is the chronic inflammation mediated by inflammatory cells releasing proteases, including the enzyme dipeptidyl peptidase IV (DPP-IV). This review sought to recapitulate available evidence on the involvement of DPP-IV in AAA development. Further, we assessed the experimental use of currently available DPP-IV inhibitors for AAA management in murine models. Embase, Medline, PubMed, and Web of Science databases were utilised to access the relevant studies. The review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). A narrative synthesis approach was used. Sixty-four studies were identified from the searched databases; a final 11 were included in the analysis. DPP-IV was reported to be significantly increased in both AAA tissue and plasma of patients and correlated with AAA growth. DPP-IV inhibitors (sitagliptin, vildagliptin, alogliptin, and teneligliptin) were all shown to attenuate AAA formation in murine models by reducing monocyte differentiation, the release of reactive oxygen species (ROS), and metalloproteinases (MMP-2 and MMP-9). DPP-IV seems to play a role in AAA pathogenesis by propagating the inflammatory microenvironment. This is supported by observations of decreased AAA formation and reduction in macrophage infiltration, ROS, matrix MMPs, and interleukins following the use of DPP-IV inhibitors in murine models. There is an existing translational gap from preclinical observations to clinical trials in this important and novel mechanism of AAA pathogenesis. This prior literature highlights the need for further research on molecular targets involved in AAA formation.
Collapse
Affiliation(s)
- Elisha Ngetich
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Pierfrancesco Lapolla
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Anirudh Chandrashekar
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Ashok Handa
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Regent Lee
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
7
|
Cai L, Tang H, Zhou M, Ding Y, Li X, Shi Z. Artesunate Attenuated the Progression of Abdominal Aortic Aneurysm in a Mouse Model. J Surg Res 2021; 267:404-413. [PMID: 34225053 DOI: 10.1016/j.jss.2021.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 03/12/2021] [Accepted: 05/02/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND The inflammatory reaction is an important mechanism of pathogenesis of abdominal aortic aneurysm (AAA). Artesunate (AS) has been found to have anti-inflammatory effects in cardiovascular disease. The purpose of this study was to investigate whether AS could inhibit the development of AAA. MATERIALS AND METHODS AngII infused ApoE (-/-) male mice were selected as AAA model. Mice were spilt into three groups, the experimental control group (AngII), the AS treatment group (AngII + AS) and the negative control group (Vehicle) with 14 in each group. Daily administration of AS (100 mg/kg/d) or vehicle performed 3 day before the perfusion. At the end of the 28-day experiment, animal ultrasound and electronic digital caliper were used to measure the diameter of abdominal aorta. Histologic assays were performed to observe the microstructure of the aorta wall. Immunofluorescence staining was performed to detect inflammatory cells, as well as the levels of matrix metalloproteinases (MMPs). The transcription of cytokines and adhesion molecules were investigated by real-time fluorescence quantitative PCR (qPCR). Western blotting was performed to determine whether the NF-κB pathway is involved in the mechanism. RESULTS While AS failed to reduce the incidence of AAA, AS effectively reduced the diameter of AAA independently of blood pressure effects. Immunofluorescence detection showed that AS effectively reduced the levels of CD45+ cells and MAC3+ macrophages as well as MMP-2 and MMP-9. qPCR revealed that AS reduced mRNA transcription levels of MMP-2, MMP-9, the cytokine IL-1β, TNF-α, adhesion molecules ICAM-1, VCAM-1. AS decreased the levels of NF-κB signaling pathway in aorta. CONCLUSIONS AS can attenuate the development of AAA in mice. The possible mechanism is anti-inflammation.
Collapse
Affiliation(s)
- Liang Cai
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hanfei Tang
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Min Zhou
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yong Ding
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xu Li
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhenyu Shi
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China..
| |
Collapse
|
8
|
Shi J, Guo J, Li Z, Xu B, Miyata M. Importance of NLRP3 Inflammasome in Abdominal Aortic Aneurysms. J Atheroscler Thromb 2021; 28:454-466. [PMID: 33678767 PMCID: PMC8193780 DOI: 10.5551/jat.rv17048] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a chronic inflammatory degenerative aortic disease, which particularly affects older people. Nucleotide-binding oligomerization domain-like receptor family protein 3 (NLRP3) inflammasome is a multi-protein complex and mediates inflammatory responses by activating caspase 1 for processing premature interleukin (IL)-1β and IL-18. In this review, we first summarize the principle of NLRP3 inflammasome activation and the functionally distinct classes of small molecule NLRP3 inflammasome inhibitors. Next, we provide a comprehensive literature review on the expression of NLRP3 inflammasome effector mediators (IL-1β and IL-18) and components (caspase 1, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and NLRP3) in clinical and experimental AAAs. Finally, we discuss the influence of genetic deficiency or pharmacological inhibition of individual effector mediators and components of NLRP3 inflammasome on experimental AAAs. Accumulating clinical and experimental evidence suggests that NLRP3 inflammasome may be a promise therapeutic target for developing pharmacological strategies for clinical AAA management.
Collapse
Affiliation(s)
- Jinyun Shi
- Center for Hypertension Care, Shanxi Medical University First Hospital, Taiyuan, Shanxi Province, P. R. China
| | - Jia Guo
- Center for Hypertension Care, Shanxi Medical University First Hospital, Taiyuan, Shanxi Province, P. R. China
| | - Zhidong Li
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi Province, P. R. China
| | - Baohui Xu
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Masaaki Miyata
- School of Health Science, Faculty of Medicine, Kagoshima University, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
9
|
Ouyang M, Qin T, Liu H, Lu J, Peng C, Guo Q. Enhanced Inflammatory Reaction and Thrombosis in High-Fat Diet-Fed ApoE-/- Mice are Attenuated by Celastrol. Exp Clin Endocrinol Diabetes 2020; 129:339-348. [PMID: 32176932 DOI: 10.1055/a-1010-5543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE High-fat diet (HFD) increases the risk of inflammatory reaction and acute arterial thrombosis. Celastrol has been confirmed to regulate inflammatory cytokine levels in atherosclerotic animal models. However, the anti-thrombotic effects of celastrol have remained to be fully demonstrated. The present study was performed to investigate the beneficial effect of celastrol in HFD-induced inflammatory reaction and thrombosis in apolipoprotein (apo)E-/- mice. MATERIALS AND METHODS Thrombogenic mice model was established using HFD-fed apoE-/- mice. The levels of mRNA and protein were assayed by RT-qPCR and western blotting, respectively. Immunohistochemistry (IHC) staining was performed to measure the protein expression of matrix metalloproteinase-2 and matrix metalloproteinase-9 in the aortic endothelium of HFD-fed apoE-/- mice. RESULTS The results demonstrated that the effect of HFD on inflammatory cytokines in mice with apoE-/- background was reversed by celastrol administration, and celastrol treatment inhibited the NOD-like receptor family, pyrin domain containing 3 (NLRP3)/caspase-1/interleukin-1β signaling cascades in peripheral blood mononuclear cells from HFD-fed apoE-/- mice. In addition, HFD enhanced adenosine diphosphate-induced platelet aggregation in normal C57BL/6 and apoE-/- mice, while celastrol administration reversed this. Furthermore, celastrol inhibited the pro-thrombotic effects of HFD in apoE-/- mice, and the underlying mechanism was mediated, at least partially, through the suppression of matrix metalloproteinase-2 and -9 expression. CONCLUSIONS Celastrol administration significantly attenuated HFD-induced inflammatory reaction, platelet aggregation and thrombosis in apoE-/- mice, and celastrol may be used as a drug for the prevention of HFD-induced inflammatory reaction and thrombus.
Collapse
Affiliation(s)
- Mao Ouyang
- Department of Geriatrics, the Third Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Tao Qin
- Department of Geriatrics, the Third Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Hengdao Liu
- Department of Geriatrics, the Third Xiangya Hospital, Central South University, Changsha, P. R. China.,Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Junya Lu
- Department of Geriatrics, the Third Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Caixia Peng
- Department of Geriatrics, the Third Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Qin Guo
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, P. R. China
| |
Collapse
|
10
|
Lindquist Liljeqvist M, Eriksson L, Villard C, Lengquist M, Kronqvist M, Hultgren R, Roy J. Dipeptidyl peptidase-4 is increased in the abdominal aortic aneurysm vessel wall and is associated with aneurysm disease processes. PLoS One 2020; 15:e0227889. [PMID: 31971988 PMCID: PMC6977716 DOI: 10.1371/journal.pone.0227889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/31/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a potentially life-threatening disease, and until today there is no other treatment available than surgical intervention. Dipeptidyl peptidase-4 (DPP4)-inhibitors, used clinically to treat type 2 diabetes, have in murine models been shown to attenuate aneurysm formation and decrease aortic wall matrix degradation, inflammation and apoptosis. Our aim was to investigate if DPP4 is present, active and differentially expressed in human AAA. METHODS AND RESULTS DPP4 gene expression was elevated in both media and adventitia of AAA tissue compared with control tissue, as measured by microarrays and qPCR, with consistent findings in external data. The plasma activity of DPP4 was however lower in male patients with AAA compared with age- and gender-matched controls, independently of comorbidity or medication. Immunohistochemical double staining revealed co-localization of DPP4 with cells positive for CD68, CD4 and -8, CD20, and SMA. Gene set enrichment analysis demonstrated that expression of DPP4 in AAA tissue correlated with expression of biological processes related to B- and T-cells, extracellular matrix turnover, peptidase activity, oxidative stress and angiogenesis whereas it correlated negatively with muscle-/actin-related processes. CONCLUSION DPP4 is upregulated in both media and adventitia of human AAA and correlates with aneurysm pathophysiological processes. These results support previous murine mechanistic studies and implicate DPP4 as a target in AAA disease.
Collapse
Affiliation(s)
| | - Linnea Eriksson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Christina Villard
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Mariette Lengquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Malin Kronqvist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Rebecka Hultgren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Vascular Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Joy Roy
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Vascular Surgery, Karolinska University Hospital, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
11
|
The role of IL-1β in aortic aneurysm. Clin Chim Acta 2020; 504:7-14. [PMID: 31945339 DOI: 10.1016/j.cca.2020.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/12/2022]
Abstract
Interleukin-1β (IL-1β) is a vital cytokine that plays an important role in regulating immune responses to infectious challenges and sterile insults. In addition, two endogenous inhibitors of functional receptor binding, IL-1 receptor antagonist (IL-1Ra), complete the family. To gain biological activity, IL-1β requires processing by the protease caspase-1 and activation of inflammasomes. Numerous clinical association studies and experimental approaches have implicated members of the IL-1 family, their receptors, or components of the processing machinery in the underlying processes of cardiovascular diseases. Here, we summarize the current state of knowledge regarding the pro-inflammatory and disease-modulating role of the IL-1 family in aneurysm. We discuss clinical evidence, signalling pathway, and mechanism of action and last, lend a perspective on currently developing therapeutic strategies involving IL-1β in aneurysm.
Collapse
|
12
|
Raffort J, Lareyre F, Clément M, Hassen-Khodja R, Chinetti G, Mallat Z. Diabetes and aortic aneurysm: current state of the art. Cardiovasc Res 2019; 114:1702-1713. [PMID: 30052821 PMCID: PMC6198737 DOI: 10.1093/cvr/cvy174] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/19/2018] [Indexed: 12/17/2022] Open
Abstract
Aortic aneurysm is a life-threatening disease due to the risk of aortic rupture. The only curative treatment available relies on surgical approaches; drug-based therapies are lacking, highlighting an unmet need for clinical practice. Abdominal aortic aneurysm (AAA) is frequently associated with atherosclerosis and cardiovascular risk factors including male sex, age, smoking, hypertension, and dyslipidaemia. Thoracic aortic aneurysm (TAA) is more often linked to genetic disorders of the extracellular matrix and the contractile apparatus but also share similar cardiovascular risk factors. Intriguingly, a large body of evidence points to an inverse association between diabetes and both AAA and TAA. A better understanding of the mechanisms underlying the negative association between diabetes and aortic aneurysm could help the development of innovative diagnostic and therapeutic approaches to tackle the disease. Here, we summarize current knowledge on the relationship between glycaemic parameters, diabetes, and the development of aortic aneurysm. Cellular and molecular pathways that underlie the protective effect of diabetes itself and its treatment are reviewed and discussed, along with their potential implications for clinical translation.
Collapse
Affiliation(s)
- Juliette Raffort
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, Robinson Way, UK.,Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Team 5, Hôpital Européen Georges Pompidou, 56 rue Leblanc, Paris, France.,Department of Clinical Biochemistry, University Hospital of Nice, 30 avenue de la Voie Romaine, Nice Cedex 1, France.,Université Côte d'Azur, CHU, Inserm U1065, C3M, 151 Route de Ginestière, Nice Cedex 3, France
| | - Fabien Lareyre
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, Robinson Way, UK.,Université Côte d'Azur, CHU, Inserm U1065, C3M, 151 Route de Ginestière, Nice Cedex 3, France.,Department of Vascular Surgery, University Hospital of Nice, 30 avenue de la Voie Romaine, Nice Cedex 1, France
| | - Marc Clément
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, Robinson Way, UK
| | - Réda Hassen-Khodja
- Université Côte d'Azur, CHU, Inserm U1065, C3M, 151 Route de Ginestière, Nice Cedex 3, France.,Department of Vascular Surgery, University Hospital of Nice, 30 avenue de la Voie Romaine, Nice Cedex 1, France
| | - Giulia Chinetti
- Department of Clinical Biochemistry, University Hospital of Nice, 30 avenue de la Voie Romaine, Nice Cedex 1, France.,Université Côte d'Azur, CHU, Inserm U1065, C3M, 151 Route de Ginestière, Nice Cedex 3, France
| | - Ziad Mallat
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, Robinson Way, UK.,Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris Cardiovascular Research Center, Team 5, Hôpital Européen Georges Pompidou, 56 rue Leblanc, Paris, France
| |
Collapse
|
13
|
Morishita T, Uzui H, Ikeda H, Amaya N, Kaseno K, Ishida K, Fukuoka Y, Tada H. Effects of Sitagliptin on the Coronary Flow Reserve, Circulating Endothelial Progenitor Cells and Stromal Cell-derived Factor-1alpha. Intern Med 2019; 58:2773-2781. [PMID: 31243210 PMCID: PMC6815900 DOI: 10.2169/internalmedicine.2616-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Objective Circulating endothelial progenitor cells (EPCs) are regulated by stromal cell-derived factor-1alpha (SDF-1α) and are reduced in type 2 diabetes mellitus (DM). SDF-1α is a substrate of dipeptidyl-peptidase-4 (DPP-4), so we investigated whether or not DPP-4-inhibitors modulate EPC levels in type 2 DM patients with coronary artery disease (CAD). Methods Thirty patients with CAD and type 2 DM treated using an ordinary regimen were enrolled. EPC and SDF-1α levels were compared between those receiving additional 24-week treatment with a DPP-4-inhibitor (n=11) and no additional treatment (n=19). We determined the HbA1c, 1.5-Anhydro-D-glucitol (1,5-AG), coronary flow reserve (CFR), brain natriuretic peptide (BNP), E/e', and circulating EPC proportion and SDF-1α levels at baseline and the end of follow-up. The CFR was assessed using a dual-sensor-equipped guidewire. The primary endpoints were changes in the EPC count, SDF-1α levels, and CFR from baseline to the end of follow-up. The secondary endpoints were changes in the HbA1c and 1,5-AG, which are useful clinical markers of postprandial hyperglycemia, as well as the BNP and E/e'. Results After the 6-month follow-up, compared with ordinary regimen subjects, the patients receiving a DPP-4-inhibitor showed no significant increase in the EPC proportion (-0.01±0.50 vs. 0.02±0.77%, p=0.87), SDF-1α level (-600.4±653.6 vs. -283.2±543.1 pg/mL, p=0.18), or CFR (0.0±0.2 vs. 0.1±0.6, p=0.20), whereas both the 1.5-AG level (2.4±4.6 vs. -0.7±2.5 μg/dL, p=0.07) and HbA1c (-0.8±1.8 vs. 0.0±0.7%, p=0.02) were improved. There were no significant differences between the two groups in changes in the BNP and E/e'. Conclusion DPP-4 inhibition with sitagliptin did not increase or decrease the EPC proportion, SDF-1α level, or CFR, although the glycemic control was improved.
Collapse
Affiliation(s)
- Tetsuji Morishita
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Japan
| | - Hiroyasu Uzui
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Japan
| | - Hiroyuki Ikeda
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Japan
| | - Naoki Amaya
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Japan
| | - Kenichi Kaseno
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Japan
| | - Kentaro Ishida
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Japan
| | - Yoshitomo Fukuoka
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Japan
| | - Hiroshi Tada
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Japan
| |
Collapse
|
14
|
Atturu G, Gooneratne T. Introduction to translational research in vascular surgery/medicine. INDIAN JOURNAL OF VASCULAR AND ENDOVASCULAR SURGERY 2019. [DOI: 10.4103/ijves.ijves_30_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
15
|
Appelman-Dijkstra NM, Papapoulos SE. Clinical advantages and disadvantages of anabolic bone therapies targeting the WNT pathway. Nat Rev Endocrinol 2018; 14:605-623. [PMID: 30181608 DOI: 10.1038/s41574-018-0087-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The WNT signalling pathway is a key regulator of bone metabolism, particularly bone formation, which has helped to define the role of osteocytes - the most abundant bone cells - as orchestrators of bone remodelling. Several molecules involved in the control of the WNT signalling pathway have been identified as potential targets for the development of bone-building therapeutics for patients with osteoporosis. Several of these molecules have been investigated in animal models, but only inhibitors of sclerostin (which is produced by osteocytes) have been investigated in phase III clinical studies. Here, we review the rationale for these developments and the specificity and potential off-target actions of WNT-based therapeutics. We also describe the available preclinical and clinical studies and discuss the benefits and risks of using sclerostin inhibitors for the management of patients with osteoporosis.
Collapse
|
16
|
Dattani N, Sayers RD, Bown MJ. Diabetes mellitus and abdominal aortic aneurysms: A review of the mechanisms underlying the negative relationship. Diab Vasc Dis Res 2018; 15:367-374. [PMID: 29874945 DOI: 10.1177/1479164118780799] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Diabetes mellitus appears to be negatively associated with abdominal aortic aneurysm; however, the mechanisms underlying this relationship remain poorly understood. The aim of this article is to provide a comprehensive review of the currently understood biological pathways underlying this relationship. METHODS A review of the literature ('diabetes' OR 'hyperglycaemia' AND 'aneurysm') was performed and relevant studies grouped into biological pathways. RESULTS This review identified a number of biological pathways through which diabetes mellitus may limit the presence, growth and rupture of abdominal aortic aneurysms. These include those influencing extracellular matrix volume, extracellular matrix glycation, the formation of advanced glycation end-products, inflammation, oxidative stress and intraluminal thrombus biology. In addition, there is an increasing evidence to suggest that the medications used to treat diabetes can also limit the development and progression of abdominal aortic aneurysms. CONCLUSION The negative association between diabetes and abdominal aortic aneurysm is robust. Future studies should attempt to target the pathways identified in this review to develop novel therapeutic agents aimed at slowing or even halting aneurysm progression.
Collapse
Affiliation(s)
- Nikesh Dattani
- Department of Cardiovascular Sciences, NIHR Leicester Cardiovascular Biomedical Research Unit and British Heart Foundation Cardiovascular Research Centre, University of Leicester, Leicester, UK
| | - Robert D Sayers
- Department of Cardiovascular Sciences, NIHR Leicester Cardiovascular Biomedical Research Unit and British Heart Foundation Cardiovascular Research Centre, University of Leicester, Leicester, UK
| | - Matthew J Bown
- Department of Cardiovascular Sciences, NIHR Leicester Cardiovascular Biomedical Research Unit and British Heart Foundation Cardiovascular Research Centre, University of Leicester, Leicester, UK
| |
Collapse
|
17
|
Raffort J, Chinetti G, Lareyre F. Glucagon-Like peptide-1: A new therapeutic target to treat abdominal aortic aneurysm? Biochimie 2018; 152:149-154. [PMID: 30103898 DOI: 10.1016/j.biochi.2018.06.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/29/2018] [Indexed: 12/25/2022]
Abstract
Recent antidiabetic drugs including GLP-1 receptor agonists and DPP-IV inhibitors have demonstrated protective effects in several cardiovascular diseases but their effect in abdominal aortic aneurysm (AAA) is far less known. AAA can be associated with extremely high rates of mortality and pharmacological treatments are still lacking underlining the real need to identify new therapeutic targets. The aim of this review was to summarize current knowledge on the role of GLP-1 pathway in AAA. A systematic literature review was performed and 6 relevant studies (2 clinical and 4 experimental) were included. Experimental studies demonstrated a protective effect of both GLP-1 receptor agonists and DPP-IV inhibitors through targeting the main pathophysiological mechanisms underlying AAA formation. The effects of these drugs in human AAA are still poorly known. In the limelight of clinical and experimental studies, we discuss current limits and future directions.
Collapse
Affiliation(s)
- Juliette Raffort
- Clinical Chemistry Laboratory, University Hospital of Nice, France; Université Côte d'Azur, CHU, Inserm, C3M, Nice, France.
| | - Giulia Chinetti
- Clinical Chemistry Laboratory, University Hospital of Nice, France; Université Côte d'Azur, CHU, Inserm, C3M, Nice, France
| | - Fabien Lareyre
- Université Côte d'Azur, CHU, Inserm, C3M, Nice, France; Department of Vascular Surgery, University Hospital of Nice, France
| |
Collapse
|
18
|
Isoda K, Akita K, Kitamura K, Sato-Okabayashi Y, Kadoguchi T, Isobe S, Ohtomo F, Sano M, Shimada K, Iwakura Y, Daida H. Inhibition of interleukin-1 suppresses angiotensin II-induced aortic inflammation and aneurysm formation. Int J Cardiol 2018; 270:221-227. [PMID: 29884291 DOI: 10.1016/j.ijcard.2018.05.072] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/15/2018] [Accepted: 05/21/2018] [Indexed: 10/14/2022]
Abstract
BACKGROUND Angiotensin II (Ang II) activates components of the inflammatory cascade, which promotes hypertension and development of abdominal aortic aneurysm (AAA). This study aimed to elucidate the effects of an IL-1 receptor antagonist (IL-1Ra) and an anti-IL-1β antibody (01BSUR) on Ang II-induced AAA. METHODS AND RESULTS Male wild-type (WT) and IL-1Ra-deficient (IL-1Ra-/-) mice were infused with Ang II (1000 ng/kg/min) using subcutaneous osmotic pumps for 28 days. Fourteen days post-infusion, both systolic blood pressure (SBP) (Ang II-treated IL-1Ra-/-:149 ± 2 vs. Ang II-treated WT:126 ± 3 mm Hg, p < 0.001) and abdominal aortic width (0.94 ± 0.09 vs. 0.49 ± 0.03 mm, p < 0.001) were significantly higher in IL-1Ra-/- mice than in WT mice. Because 28-day infusion with Ang II in IL-1Ra-/- mice significantly increased the occurrence of fatal aortic rupture (89% vs. 6%, p < 0.0001), both types of mice were infused with Ang II for only 14 days, and histological analyses were performed at 28 days. Interestingly, AAA increased more significantly in IL-1Ra-/- mice than in WT mice (p < 0.001), although SBP did not differ at 28 days in IL-1Ra-/- and WT mice (117 ± 4 vs. 115 ± 3 mm Hg, p = 0.71 (after cessation of Ang II infusion)). Histological analyses showed numerous inflammatory cells around the abdominal aorta in IL-1Ra-/- mice, but not in WT mice. Finally, compared with IgG2a treatment, treatment with 01BSUR decreased Ang II-induced AAA in IL-1Ra-/- mice. CONCLUSIONS The present study demonstrates that inhibition of IL-1β significantly suppresses AAA formation after Ang II infusion, suggesting that suppression of IL-1β may provide an additional strategy to protect against AAA in hypertensive patients.
Collapse
Affiliation(s)
- Kikuo Isoda
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan.
| | - Koji Akita
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Kenichi Kitamura
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yayoi Sato-Okabayashi
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Tomoyasu Kadoguchi
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Sarasa Isobe
- Division of Cardiology, Keio University, Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Fumie Ohtomo
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Motoaki Sano
- Division of Cardiology, Keio University, Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Kazunori Shimada
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yoichiro Iwakura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Hiroyuki Daida
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
19
|
The oral administration of clarithromycin prevents the progression and rupture of aortic aneurysm. J Vasc Surg 2018; 68:82S-92S.e2. [PMID: 29550174 DOI: 10.1016/j.jvs.2017.12.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The pathogenesis of aortic aneurysm (AA) is associated with chronic inflammation in the aortic wall with increased levels of matrix metalloproteinases (MMPs). Clarithromycin (CAM) has been reported to suppresses MMP activity. In this study, we investigated whether CAM could prevent the formation and rupture of AA. METHODS Male apolipoprotein E-deficient mice (28-30 weeks of age) were infused with angiotensin II for 28 days. CAM (100 mg/kg/d) or saline (as a control) was administered orally to the mice every day (CAM group, n = 13; control group, n = 13). After the administration period, the aortic diameter, elastin content, macrophage infiltration, MMP levels, and levels of inflammatory cytokines, including nuclear factor κB (NF-κB), were measured. RESULTS The aortic diameter was significantly suppressed in the CAM group (P < .001). No rupture death was observed in the CAM group in contrast to five deaths (38%) in the control group (P < .01). CAM significantly suppressed the degradation of aortic elastin (56.3% vs 16.5%; P < .001) and decreased the infiltration of inflammatory macrophages (0.05 vs 0.16; P < .01). Compared with the controls, the enzymatic activity of MMP-2 and MMP-9 was significantly reduced in the CAM group (MMP-2, 0.15 vs 0.56 [P < .01]; MMP-9, 0.12 vs 0.60 [P < .01]), and the levels of interleukin 1β (346.6 vs 1066.0; P < .05), interleukin 6 (128.4 vs 346.2; P < .05), and phosphorylation of NF-κB were also decreased (0.3 vs 2.0; P < .01). CONCLUSIONS CAM suppressed the progression and rupture of AA through the suppression of inflammatory macrophage infiltration, a reduction in MMP-2 and MMP-9 activity, and the inhibition of elastin degradation associated with the suppression of NF-κB phosphorylation.
Collapse
|
20
|
Takahara Y, Tokunou T, Ichiki T. Suppression of Abdominal Aortic Aneurysm Formation in Mice by Teneligliptin, a Dipeptidyl Peptidase-4 Inhibitor. J Atheroscler Thromb 2018; 25:698-708. [PMID: 29321388 PMCID: PMC6099070 DOI: 10.5551/jat.42481] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: Dipeptidyl peptidase-4 (DPP-4) inhibitors lower blood glucose levels through inhibition of incretin degradation, which stimulates insulin secretion. Recent studies reported that DPP-4 inhibitors suppressed atherogenesis in apolipoprotein E-knockout (ApoEKO) mice. In this study, we investigated whether teneligliptin, a DPP-4 inhibitor, affects the development of abdominal aortic aneurysms (AAA) in ApoEKO mice. Methods: ApoEKO mice were fed a high-fat diet (HFD) and infused with angiotensin (Ang) II by osmotic mini pumps for 4 weeks to induce AAA with (DPP-4i group) or without (control group) teneligliptin administered orally from 1 week before HFD and Ang II infusion to the end of the experiment. Confluent rat vascular smooth muscle cells (VSMCs) were serum-starved for 48 hours, then incubated with or without teneligliptin for another 24 hours and stimulated with Ang II. Results: Treatment with teneligliptin significantly reduced the AAA formation rate (30.7% vs. 71.4% vs. control, P < 0.05), aortic dilatation (1.32 ± 0.09 mm vs. 1.76 ± 0.18 mm in the control, P < 0.05) and severity score (0.75 ± 0.28 vs. 1.91 ± 0.4 in the control, P < 0.05). Elastin degradation grade was also attenuated in DPP-4i group (2.83 ± 0.17 vs. 3.45 ± 0.16 in the control, P < 0.05). The number of macrophages infiltrating into the abdominal aorta was decreased in the DPP-4i group (51.8 ± 29.8/section vs. 219.5 ± 78.5/section in the control, P < 0.05). Teneligliptin attenuated Ang II-induced phosphorylation of extracellular signal-regulated kinase (ERK) and Akt, and mRNA expression of monocyte chemoattractant protein-1 in VSMCs. Conclusion: Treatment with teneligliptin suppressed AAA formation in ApoEKO mice with HFD and Ang II infusion. Suppression of macrophage infiltration by teneligliptin may be involved in the inhibition of AAA formation.
Collapse
Affiliation(s)
- Yusuke Takahara
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Kyushu University
| | - Tomotake Tokunou
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Kyushu University.,Center for Disruptive Cardiovascular Medicine, Department of Advanced Cardiovascular Regulation and Therapeutics, Kyushu University
| | - Toshihiro Ichiki
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Kyushu University.,Department of Cardiology, Harasanshin Hospital
| |
Collapse
|
21
|
Iida Y, Tanaka H, Sano H, Suzuki Y, Shimizu H, Urano T. Ectopic Expression of PCSK9 by Smooth Muscle Cells Contributes to Aortic Dissection. Ann Vasc Surg 2017; 48:195-203. [PMID: 29197601 DOI: 10.1016/j.avsg.2017.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/10/2017] [Accepted: 10/15/2017] [Indexed: 01/25/2023]
Abstract
BACKGROUND Acute aortic dissection (AAD) is a common disease among the elderly. Although several risk factors of AAD have been reported, the molecular mechanism underlying AAD development remains to be elucidated. Proprotein convertase subtilisin/kexin type 9 (PCSK9) increases low-density lipoprotein cholesterol levels in blood by preventing its clearance. Therefore, PCSK9 inhibition is a promising therapeutic approach to treat cardiovascular diseases (CVDs). The objective of this study was to elucidate the role of PCSK9 in the pathogenesis of AAD. METHODS We used fluorescence immunohistochemistry to assess PCSK9 expression in aortic tissues resected from 10 AAD patients and in the normal aorta from 5 autopsy samples as well as in spontaneously hyperlipidemic apolipoprotein E-deficient mice used as an experimental AD model. RESULTS We revealed a characteristic distribution pattern of PCSK9 in atherosclerotic plaques and the degenerated tunica media in AAD tissues, which was rarely observed in normal aortic tissues. Furthermore, PCSK9 was notably expressed around calcification areas formed by vascular smooth muscle cells, especially those of the synthetic phenotype. The results obtained in the animal model were consistent with PCSK9 expression in AAD tissues. CONCLUSIONS Our findings suggest that PCSK9 overexpression in the aorta may promote AAD. This study adds to the growing body of evidence supporting the use of PCSK9 inhibitors for the management of CVDs.
Collapse
Affiliation(s)
- Yasunori Iida
- Department of Cardiovascular Surgery, Keio University, Tokyo, Japan; Department of Cardiovascular Surgery, Saiseikai Yokohamashi Tobu Hospital, Yokohama, Japan
| | - Hiroki Tanaka
- Department of Medical Physiology, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | - Hideto Sano
- Department of Medical Physiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuko Suzuki
- Department of Medical Physiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hideyuki Shimizu
- Department of Cardiovascular Surgery, Keio University, Tokyo, Japan.
| | - Tetsumei Urano
- Department of Medical Physiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
22
|
Suzuki T, Tada Y, Gladson S, Nishimura R, Shimomura I, Karasawa S, Tatsumi K, West J. Vildagliptin ameliorates pulmonary fibrosis in lipopolysaccharide-induced lung injury by inhibiting endothelial-to-mesenchymal transition. Respir Res 2017; 18:177. [PMID: 29037205 PMCID: PMC5644255 DOI: 10.1186/s12931-017-0660-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 10/06/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pulmonary fibrosis is a late manifestation of acute respiratory distress syndrome (ARDS). Sepsis is a major cause of ARDS, and its pathogenesis includes endotoxin-induced vascular injury. Recently, endothelial-to-mesenchymal transition (EndMT) was shown to play an important role in pulmonary fibrosis. On the other hand, dipeptidyl peptidase (DPP)-4 was reported to improve vascular dysfunction in an experimental sepsis model, although whether DPP-4 affects EndMT and fibrosis initiation during lipopolysaccharide (LPS)-induced lung injury is unclear. The aim of this study was to investigate the anti-EndMT effects of the DPP-4 inhibitor vildagliptin in pulmonary fibrosis after systemic endotoxemic injury. METHODS A septic lung injury model was established by intraperitoneal injection of lipopolysaccharide (LPS) in eight-week-old male mice (5 mg/kg for five consecutive days). The mice were then treated with vehicle or vildagliptin (intraperitoneally, 10 mg/kg, once daily for 14 consecutive days from 1 day before the first administration of LPS.). Flow cytometry, immunohistochemical staining, and quantitative polymerase chain reaction (qPCR) analysis was used to assess cell dynamics and EndMT function in lung samples from the mice. RESULTS Lung tissue samples from treated mice revealed obvious inflammatory reactions and typical interstitial fibrosis 2 days and 28 days after LPS challenge. Quantitative flow cytometric analysis showed that the number of pulmonary vascular endothelial cells (PVECs) expressing alpha-smooth muscle actin (α-SMA) or S100 calcium-binding protein A4 (S100A4) increased 28 days after LPS challenge. Similar increases in expression were also confirmed by qPCR of mRNA from isolated PVECs. EndMT cells had higher proliferative activity and migration activity than mesenchymal cells. All of these changes were alleviated by intraperitoneal injection of vildagliptin. Interestingly, vildagliptin and linagliptin significantly attenuated EndMT in the absence of immune cells or GLP-1. CONCLUSIONS Inhibiting DPP-4 signaling by vildagliptin could ameliorate pulmonary fibrosis by downregulating EndMT in systemic LPS-induced lung injury.
Collapse
Affiliation(s)
- Toshio Suzuki
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA. .,Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Yuji Tada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Santhi Gladson
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Rintaro Nishimura
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Advanced Medicine in Pulmonary Hypertension, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Iwao Shimomura
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Karasawa
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - James West
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| |
Collapse
|
23
|
Kushima H, Mori Y, Koshibu M, Hiromura M, Kohashi K, Terasaki M, Fukui T, Hirano T. The role of endothelial nitric oxide in the anti-restenotic effects of liraglutide in a mouse model of restenosis. Cardiovasc Diabetol 2017; 16:122. [PMID: 28969637 PMCID: PMC5625638 DOI: 10.1186/s12933-017-0603-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/21/2017] [Indexed: 12/25/2022] Open
Abstract
Background Previous animal studies have shown that glucagon-like peptide-1 receptor agonists (GLP-1RAs) suppress arterial restenosis, a major complication of angioplasty, presumably through their direct action on vascular smooth muscle cells. However, the contribution of vascular endothelial cells (VECs) to this process remains unknown. In addition, the potential interference caused by severe hyperglycemia and optimal treatment regimen remain to be determined. Methods Nine-week-old male C57BL6 (wild-type) and diabetic db/db mice were randomly divided into vehicle or liraglutide treatment groups (Day 1), and subject to femoral artery wire injuries (Day 3). The injured arteries were collected on Day 29 for morphometric analysis. Human umbilical vein endothelial cells (HUVECs) were used for in vitro experiments. One-way ANOVA, followed by Tukey’s test, was used for comparisons. Results In wild-type mice, liraglutide treatment (5.7, 17, or 107 nmol/kg/day) dose-dependently reduced the neointimal area (20, 50, and 65%) without inducing systemic effects, and caused an associated decrease in the percentage of vascular proliferating cells. However, these effects were completely abolished by the nitric oxide synthase (NOS) inhibitor N-omega-nitro-l-arginine methyl ester. Next, we investigated the optimal treatment regimen. Early treatment (Days 1–14) was as effective in reducing the neointimal area and vascular cell proliferation as full treatment (Days 1–29), whereas delayed treatment (Days 15–29) was ineffective. In HUVECs, liraglutide treatment dose-dependently stimulated NO production, which was dependent on GLP-1R, cAMP, cAMP-dependent protein kinase, AMP-activated protein kinase (AMPK), and NOS. Subsequently, we investigated the role of liver kinase B (LKB)-1 in this process. Liraglutide increased the phosphorylation of LKB-1, and siRNA-induced LKB-1 knockdown abolished liraglutide-stimulated NO production. In severe hyperglycemic db/db mice, liraglutide treatment also suppressed neointimal hyperplasia, which was accompanied by reductions in vascular cell proliferation and density. Furthermore, liraglutide treatment suppressed hyperglycemia-enhanced vascular inflammation 7 days after arterial injury. Conclusions We demonstrate that endothelial cells are targets of liraglutide, and suppress restenosis via endothelial NO. Furthermore, the protective effects are maintained in severe hyperglycemia. Our findings provide an evidence base for a future clinical trial to determine whether treatment with GLP-1RAs represents potentially effective pharmacological therapy following angioplasty in patients with diabetes. Electronic supplementary material The online version of this article (doi:10.1186/s12933-017-0603-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hideki Kushima
- Department of Internal Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Yusaku Mori
- Department of Internal Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan.
| | - Masakazu Koshibu
- Department of Internal Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Munenori Hiromura
- Department of Internal Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Kyoko Kohashi
- Department of Internal Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Michishige Terasaki
- Department of Internal Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Tomoyasu Fukui
- Department of Internal Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Tsutomu Hirano
- Department of Internal Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan.
| |
Collapse
|
24
|
Duan L, Rao X, Xia C, Rajagopalan S, Zhong J. The regulatory role of DPP4 in atherosclerotic disease. Cardiovasc Diabetol 2017; 16:76. [PMID: 28619058 PMCID: PMC5472996 DOI: 10.1186/s12933-017-0558-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/02/2017] [Indexed: 02/07/2023] Open
Abstract
The increasing prevalence of atherosclerosis has become a worldwide health concern. Although significant progress has been made in the understanding of atherosclerosis pathogenesis, the underlying mechanisms are not fully understood. Recent studies suggest dipeptidyl peptidase-4 (DPP4), a regulator of inflammation and metabolism, may be involved in the development of atherosclerotic diseases. There has been increasing clinical and pre-clinical evidence showing DPP4-incretin axis is involved in cardiovascular disease. Although the cardiovascular outcome of DPP4 inhibition or incretin analogues has been or being evaluated by several large scale clinical trials, the exact role of DPP4 in atherosclerotic diseases is not completely understood. In the current review, we will summarize the recent advances in direct and indirect regulatory role of DPP4 in atherosclerosis.
Collapse
Affiliation(s)
- Lihua Duan
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003 Fujian China
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, 2103 Cornell Rd., Wolstein Research Building 4525, Cleveland, OH 44106 USA
| | - Xiaoquan Rao
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, 2103 Cornell Rd., Wolstein Research Building 4525, Cleveland, OH 44106 USA
| | - Chang Xia
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, 2103 Cornell Rd., Wolstein Research Building 4525, Cleveland, OH 44106 USA
- Department of Microbiology and Immunology, Wuhan Polytechnic University, Wuhan, 430023 Hubei China
| | - Sanjay Rajagopalan
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, 2103 Cornell Rd., Wolstein Research Building 4525, Cleveland, OH 44106 USA
| | - Jixin Zhong
- Cardiovascular Research Institute, School of Medicine, Case Western Reserve University, 2103 Cornell Rd., Wolstein Research Building 4525, Cleveland, OH 44106 USA
| |
Collapse
|
25
|
Deletion of hypoxia-inducible factor-1α in myeloid lineage exaggerates angiotensin II-induced formation of abdominal aortic aneurysm. Clin Sci (Lond) 2017; 131:609-620. [PMID: 28196857 DOI: 10.1042/cs20160865] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/09/2017] [Accepted: 02/14/2017] [Indexed: 11/17/2022]
Abstract
Hypoxia-inducible factor (HIF)-1α is a transcription factor that regulates various genes responding to hypoxic conditions. We previously reported that myeloid-specific activation of HIF-1α had protective effects on hypertensive cardiovascular remodelling in mice. However the role of myeloid lineage HIF-1α in the development of abdominal aortic aneurysm (AAA) has not been determined. Myeloid-specific HIF-1α knockout (HIF-1KO) mice were created using a Cre-lox recombination system in the background of apolipoprotein E-deficient (ApoE-/-) mice. HIF-1KO and control mice were fed high-fat diet (HFD) and infused with angiotensin II (Ang II, 1800 ng/kg/min) by an osmotic mini pump for 4 weeks to induce AAA formation. Deletion of HIF-1α increased aortic external diameter (2.47±0.21 mm versus 1.80±0.28 mm in control, P=0.035). AAA formation rate (94.4% in HIF-1KO versus 81.8% in control) was not statistically significant. Elastic lamina degradation grade determined by Elastica van Gieson (EVG) staining was deteriorated in HIF-1KO mice (3.91±0.08 versus 3.25±0.31 in control, P=0.013). The number of infiltrated macrophages into the abdominal aorta was increased in HIF-1KO mice. Expression of tissue inhibitors of metalloproteinases (TIMPs) was suppressed in the aorta and peritoneal macrophages (PMs) from HIF-1KO mice compared with control mice. HIF-1α in myeloid lineage cells may have a protective role against AAA formation induced by Ang II and HFD in ApoE-/- mice.
Collapse
|
26
|
Terasaki M, Hiromura M, Mori Y, Kohashi K, Kushima H, Ohara M, Watanabe T, Andersson O, Hirano T. Combination Therapy with a Sodium-Glucose Cotransporter 2 Inhibitor and a Dipeptidyl Peptidase-4 Inhibitor Additively Suppresses Macrophage Foam Cell Formation and Atherosclerosis in Diabetic Mice. Int J Endocrinol 2017; 2017:1365209. [PMID: 28408925 PMCID: PMC5376482 DOI: 10.1155/2017/1365209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/12/2017] [Indexed: 12/02/2022] Open
Abstract
Dipeptidyl peptidase-4 inhibitors (DPP-4is), in addition to their antihyperglycemic roles, have antiatherosclerotic effects. We reported that sodium-glucose cotransporter 2 inhibitors (SGLT2is) suppress atherosclerosis in a glucose-dependent manner in diabetic mice. Here, we investigated the effects of combination therapy with SGLT2i and DPP-4i on atherosclerosis in diabetic mice. SGLT2i (ipragliflozin, 1.0 mg/kg/day) and DPP-4i (alogliptin, 8.0 mg/kg/day), either alone or in combination, were administered to db/db mice or streptozotocin-induced diabetic apolipoprotein E-null (Apoe-/- ) mice. Ipragliflozin and alogliptin monotherapies improved glucose intolerance; however, combination therapy did not show further improvement. The foam cell formation of peritoneal macrophages was suppressed by both the ipragliflozin and alogliptin monotherapies and was further enhanced by combination therapy. Although foam cell formation was closely associated with HbA1c levels in all groups, DPP-4i alone or the combination group showed further suppression of foam cell formation compared with the control or SGLT2i group at corresponding HbA1c levels. Both ipragliflozin and alogliptin monotherapies decreased scavenger receptors and increased cholesterol efflux regulatory genes in peritoneal macrophages, and combination therapy showed additive changes. In diabetic Apoe-/- mice, combination therapy showed the greatest suppression of plaque volume in the aortic root. In conclusion, combination therapy with SGLT2i and DPP4i synergistically suppresses macrophage foam cell formation and atherosclerosis in diabetic mice.
Collapse
Affiliation(s)
- Michishige Terasaki
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Munenori Hiromura
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Yusaku Mori
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Kyoko Kohashi
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Hideki Kushima
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Makoto Ohara
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Takuya Watanabe
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Olov Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Tsutomu Hirano
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
- *Tsutomu Hirano:
| |
Collapse
|
27
|
Hiromura M, Mori Y, Kohashi K, Terasaki M, Shinmura K, Negoro T, Kawashima H, Kogure M, Wachi T, Watanabe R, Sato K, Kushima H, Tomoyasu M, Nakano Y, Yamada Y, Watanabe T, Hirano T. Suppressive Effects of Glucose-Dependent Insulinotropic Polypeptide on Cardiac Hypertrophy and Fibrosis in Angiotensin II-Infused Mouse Models. Circ J 2016; 80:1988-97. [PMID: 27375170 DOI: 10.1253/circj.cj-16-0152] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Activation of glucose-dependent insulinotropic polypeptide receptor (GIPR) has been shown to be protective against atherosclerosis. However, effects of GIP on the heart have remained unclear. To address this question, in vitro and in vivo experiments were conducted. METHODS AND RESULTS In isolated mouse cardiomyocytes, GIPR mRNA was detected by reverse transcription-polymerase chain reaction, and GIP stimulation increased adenosine 3',5'-cyclic monophosphate production. In apolipoprotein E-knockout mice, infusion of angiotensin II (AngII; 2,000 ng·kg(-1)·min(-1)) significantly increased the heart weights, and co-administration of GIP (25 nmol·kg(-1)·day(-1)) reversed this increase (both P<0.01). In the left ventricular walls, GIP suppressed AngII-induced cardiomyocyte hypertrophy by 34%, apoptosis by 77%, and interstitial fibrosis by 79% (all P<0.01). Furthermore, GIP reduced AngII-induced expression of transforming growth factor-β1 (TGF-β1) and hypoxia inducible factor-1α. In wild-type mice, cardiac hypertrophy was induced by AngII to a lesser extent, and prevented by GIP. In contrast, GIP did not show any cardioprotective effect against AngII-induced cardiac hypertrophy in GIPR-knockout mice. In an in vitro experiment using mouse cardiomyocytes, GIP suppressed AngII-induced mRNA expression of B-type natriuretic peptide and TGF-β1. CONCLUSIONS It was demonstrated that cardiomyocytes represent a direct target of GIP action in vitro, and that GIP ameliorated AngII-induced cardiac hypertrophy via suppression of cardiomyocyte enlargement, apoptosis, and fibrosis in vivo. (Circ J 2016; 80: 1988-1997).
Collapse
Affiliation(s)
- Munenori Hiromura
- Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, Showa University School of Medicine
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|