1
|
Yang D, Yang J, Chang SJ, Hu JL, Chen YJ, Yang SW. Exosome-Seeded Cryogel Scaffolds for Extracellular Matrix Regeneration in the Repair of Articular Cartilage Defects: An In Vitro and In Vivo Rabbit Model Study. Polymers (Basel) 2025; 17:975. [PMID: 40219364 PMCID: PMC11991529 DOI: 10.3390/polym17070975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Traumatic or degenerative defects of articular cartilage impair joint function, and the treatment of articular cartilage damage remains a challenge. By mimicking the cartilage extracellular matrix (ECM), exosome-seeded cryogels may enhance cell proliferation and chondral repair. ECM-based cryogels were cryopolymerized with gelatin, chondroitin sulfate, and various concentrations (0%, 0.3%, 0.5%, and 1%) of hyaluronic acid (HA), and their water content, swelling ratio, porosity, mechanical properties, and effects on cell viability were evaluated. The regenerative effects of bone marrow-derived mesenchymal stem cell (BM-MSC)-derived exosome (at a concentration of 106 particles/mL)-seeded 0.3% HA cryogels were assessed in vitro and in surgically induced male New Zealand rabbit cartilage defects in vivo. The water content, swelling ratio, and porosity of the cryogels significantly (p < 0.05) increased and the Young's modulus values of the cryogels decreased with increasing HA concentrations. MTT assays revealed that the developed biomaterials had no cytotoxic effects. The optimal cryogel composition was 0.3% HA, and the resulting cryogel had favorable properties and suitable mechanical strength. Exosomes alone and exosome-seeded cryogels promoted chondrocyte proliferation (with cell optical densities that were 58% and 51% greater than that of the control). The cryogel alone and the exosome-seeded cryogel facilitated ECM deposition and sulfated glycosaminoglycan synthesis. Although we observed cartilage repair via Alcian blue staining with both the cryogel alone and the exosome-seeded cryogel, the layered arrangement of the chondrocytes was superior to that of the control chondrocytes when exosome-seeded cryogels were used. This study revealed the potential value of using BM-MSC-derived exosome-seeded ECM-based cryogels for cartilage tissue engineering to treat cartilage injury.
Collapse
Affiliation(s)
- Daniel Yang
- Laboratory of Regenerative Medicine and Biosensors, I-Shou University, Kaohsiung City 824005, Taiwan; (D.Y.); (J.Y.); (S.-J.C.); (J.-L.H.); (Y.-J.C.)
- Cambridge International Programme, St. Dominic Catholic High School, Kaohsiung City 802306, Taiwan
| | - Joseph Yang
- Laboratory of Regenerative Medicine and Biosensors, I-Shou University, Kaohsiung City 824005, Taiwan; (D.Y.); (J.Y.); (S.-J.C.); (J.-L.H.); (Y.-J.C.)
- Cambridge International Programme, St. Dominic Catholic High School, Kaohsiung City 802306, Taiwan
| | - Shwu-Jen Chang
- Laboratory of Regenerative Medicine and Biosensors, I-Shou University, Kaohsiung City 824005, Taiwan; (D.Y.); (J.Y.); (S.-J.C.); (J.-L.H.); (Y.-J.C.)
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City 824005, Taiwan
| | - Jhe-Lun Hu
- Laboratory of Regenerative Medicine and Biosensors, I-Shou University, Kaohsiung City 824005, Taiwan; (D.Y.); (J.Y.); (S.-J.C.); (J.-L.H.); (Y.-J.C.)
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City 824005, Taiwan
| | - Yong-Ji Chen
- Laboratory of Regenerative Medicine and Biosensors, I-Shou University, Kaohsiung City 824005, Taiwan; (D.Y.); (J.Y.); (S.-J.C.); (J.-L.H.); (Y.-J.C.)
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City 824005, Taiwan
| | - Shan-Wei Yang
- Department of Orthopedics, Kaohsiung Veterans General Hospital, Kaohsiung City 813414, Taiwan
- School of Nursing, Fooyin University, Kaohsiung City 831301, Taiwan
- Department of Leisure and Sports Management, Cheng Shiu University, Kaohsiung City 833301, Taiwan
| |
Collapse
|
2
|
Privar Y, Skatova A, Maiorova M, Golikov A, Boroda A, Bratskaya S. Tuning Mechanical Properties, Swelling, and Enzymatic Degradation of Chitosan Cryogels Using Diglycidyl Ethers of Glycols with Different Chain Length as Cross-Linkers. Gels 2024; 10:483. [PMID: 39057506 PMCID: PMC11276332 DOI: 10.3390/gels10070483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Cross-linking chitosan at room and subzero temperature using a series of diglycidyl ethers of glycols (DEs)-ethylene glycol (EGDE), 1,4-butanediol (BDDE), and poly(ethylene glycol) (PEGDE) has been investigated to demonstrate that DEs can be a more powerful alternative to glutaraldehyde (GA) for fabrication of biocompatible chitosan cryogels with tunable properties. Gelation of chitosan with DEs was significantly slower than with GA, allowing formation of cryogels with larger pores and higher permeability, more suitable for flow-through applications and cell culturing. Increased hydration of the cross-links with increased DE chain length weakened intermolecular hydrogen bonding in chitosan and improved cryogel elasticity. At high cross-linking ratios (DE:chitosan 1:4), the toughness and compressive strength of the cryogels decreased in the order EGDE > BDDE > PEGDE. By varying the DE chain length and concentration, permeable chitosan cryogels with elasticity moduli from 10.4 ± 0.8 to 41 ± 3 kPa, toughness from 2.68 ± 0.5 to 8.3 ± 0.1 kJ/m3, and compressive strength at 75% strain from 11 ± 2 to 33 ± 4 kPa were fabricated. Susceptibility of cryogels to enzymatic hydrolysis was identified as the parameter most sensitive to cross-linking conditions. Weight loss of cryogels increased with increased DE chain length, and degradation rate of PEGDE-cross-linked chitosan decreased 612-fold, when the cross-linker concentration increased 20-fold.
Collapse
Affiliation(s)
- Yuliya Privar
- Institute of Chemistry Far Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100-Letiya Vladivostoka, 690022 Vladivostok, Russia
| | - Anna Skatova
- Institute of Chemistry Far Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100-Letiya Vladivostoka, 690022 Vladivostok, Russia
| | - Mariya Maiorova
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, 17, Palchevskogo Street, 690041 Vladivostok, Russia
| | - Alexey Golikov
- Institute of Chemistry Far Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100-Letiya Vladivostoka, 690022 Vladivostok, Russia
| | - Andrey Boroda
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, 17, Palchevskogo Street, 690041 Vladivostok, Russia
| | - Svetlana Bratskaya
- Institute of Chemistry Far Eastern Branch of the Russian Academy of Sciences, 159, Prosp. 100-Letiya Vladivostoka, 690022 Vladivostok, Russia
| |
Collapse
|
3
|
Kolosova OY, Vasil'ev VG, Novikov IA, Sorokina EV, Lozinsky VI. Cryostructuring of Polymeric Systems: 67 Properties and Microstructure of Poly(Vinyl Alcohol) Cryogels Formed in the Presence of Phenol or Bis-Phenols Introduced into the Aqueous Polymeric Solutions Prior to Their Freeze-Thaw Processing. Polymers (Basel) 2024; 16:675. [PMID: 38475358 DOI: 10.3390/polym16050675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Poly(vinyl alcohol) (PVA) physical cryogels that contained the additives of o-, m-, and p-bis-phenols or phenol were prepared, and their physico-chemical characteristics and macroporous morphology and the solute release dynamics were evaluated. These phenolic additives caused changes in the viscosity of initial PVA solutions before their freeze-thaw processing and facilitated the growth in the rigidity of the resultant cryogels, while their heat endurance decreased. The magnitude of the effects depended on the interposition of phenolic hydroxyls in the molecules of the used additives and was stipulated by their H-bonding with PVA OH-groups. Subsequent rinsing of such "primary" cryogels with pure water led to the lowering of their rigidity. The average size of macropores inside these heterophase gels also depended on the additive type. It was found also that the release of phenolic substances from the additive-containing cryogels occurred via virtually a free diffusion mechanism; therefore, drug delivery systems such as PVA cryogels loaded with either pyrocatechol, resorcinol, hydroquinone, or phenol, upon the in vitro agar diffusion tests, exhibited antibacterial activity typical of these phenols. The promising biomedical potential of the studied nanocomposite gel materials is supposed.
Collapse
Affiliation(s)
- Olga Yu Kolosova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, Bld. 1, 119334 Moscow, Russia
| | - Viktor G Vasil'ev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, Bld. 1, 119334 Moscow, Russia
| | - Ivan A Novikov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov Street 38, 119991 Moscow, Russia
| | - Elena V Sorokina
- Microbilogy Department, Biology Faculty, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vladimir I Lozinsky
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, Bld. 1, 119334 Moscow, Russia
- Microbiology Department, Kazan (Volga-Region) Federal University, 420008 Kazan, Russia
| |
Collapse
|