3
|
Malheiros-Souza D, Gaia LFP, Sousa FFDA, Favaro PIF, Rodrigues V, Rodrigues DBR. Evaluation of Hormonal Influence in Patients with Fractures Attributed to Osteoporosis. Rev Bras Ortop 2021; 56:804-808. [PMID: 34900111 PMCID: PMC8651443 DOI: 10.1055/s-0041-1726065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/01/2020] [Indexed: 12/04/2022] Open
Abstract
Objective
The present study aims to evaluate the influence of hormonal levels of vitamin D, calcitonin, testosterone, estradiol, and parathyroid in patients with fractures attributed to osteoporosis when compared with young patients with fractures resulting from high-impact accidents.
Methods
Blood samples were collected from 30 elderly patients with osteoporosis-attributed fractures (T-score ≤ -2.5) (osteoporotic group), and from 30 young patients with fractures resulting from high-impact accidents (control group). Measurement of 1,25-hydroxyvitamin D (Kit Diasorin, Saluggia, Italy), calcitonin (Kit Siemens, Tarrytown, NY, USA), testosterone, estradiol, and parathyroid hormone (Kit Beckman Couter, Indianapolis, IN, United States) was performed using a chemiluminescence technique. Data were inserted into a Microsoft Excel (Microsoft Corp., Armonk, WA, USA) spreadsheet and analyzed using Statview statistical software. Results showing non-normal distribution were analyzed with nonparametric methods. The Mann-Whitney test was applied for group comparison, and a Spearman test correlated hormonal levels. Statistical significance was set at
p
< 0.05. All analyzes compared gender and subjects with and without osteoporosis.
Results
Women with osteoporosis had significantly lower levels of estradiol and vitamin D (
p
= 0.047 and
p
= 0.0275, respectively). Men with osteoporosis presented significantly higher levels of parathyroid hormone (
p
= 0.0065). There was no significant difference in testosterone and calcitonin levels.
Conclusion
Osteoporosis patients presented gender-related hormonal differences. Women had significantly lower levels of estradiol and vitamin D, whereas men had significantly higher parathyroid hormone levels, apparently impacting the disease.
Collapse
Affiliation(s)
- Danila Malheiros-Souza
- Departamento de Ciências Biológicas, Laboratório de Imunologia, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brasil
| | - Leonardo Franco Pinheiro Gaia
- Departamento de Ciências Biológicas, Laboratório de Imunologia, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brasil
| | | | - Pedro Ivo Ferreira Favaro
- Departamento de Ciências Biológicas, Laboratório de Imunologia, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brasil
| | - Virmondes Rodrigues
- Departamento de Ciências Biológicas, Laboratório de Imunologia, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brasil
| | - Denise Bertulucci Rocha Rodrigues
- Departamento de Ciências Biológicas, Laboratório de Imunologia, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brasil.,Laboratório de Imunobiologia, Universidade de Uberaba, Uberaba, MG, Brasil
| |
Collapse
|
4
|
Kumutpongpanich T, Ogasawara M, Ozaki A, Ishiura H, Tsuji S, Minami N, Hayashi S, Noguchi S, Iida A, Nishino I, Mori-Yoshimura M, Oya Y, Ono K, Shimizu T, Kawata A, Shimohama S, Toyooka K, Endo K, Toru S, Sasaki O, Isahaya K, Takahashi MP, Iwasa K, Kira JI, Yamamoto T, Kawamoto M, Hamano T, Sugie K, Eura N, Shiota T, Koide M, Sekiya K, Kishi H, Hideyama T, Kawai S, Yanagimoto S, Sato H, Arahata H, Murayama S, Saito K, Hara H, Kanda T, Yaguchi H, Imai N, Kawagashira Y, Sanada M, Obara K, Kaido M, Furuta M, Kurashige T, Hara W, Kuzume D, Yamamoto M, Tsugawa J, Kishida H, Ishizuka N, Morimoto K, Tsuji Y, Tsuneyama A, Matsuno A, Sasaki R, Tamakoshi D, Abe E, Yamada S, Uzawa A. Clinicopathologic Features of Oculopharyngodistal Myopathy With LRP12 CGG Repeat Expansions Compared With Other Oculopharyngodistal Myopathy Subtypes. JAMA Neurol 2021; 78:853-863. [PMID: 34047774 DOI: 10.1001/jamaneurol.2021.1509] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Repeat expansion of CGG in LRP12 has been identified as the causative variation of oculopharyngodistal myopathy (OPDM). However, to our knowledge, the clinicopathologic features of OPDM with CGG repeat expansion in LRP12 (hereafter referred to as OPDM_LRP12) remain unknown. Objective To identify and characterize the clinicopathologic features of patients with OPDM_LRP12. Design, Setting, and Participants This case series included 208 patients with a clinical or clinicopathologic diagnosis of oculopharyngeal muscular dystrophy (OPDM) from January 1, 1978, to December 31, 2020. Patients with GCN repeat expansions in PABPN1 were excluded from the study. Repeat expansions of CGG in LRP12 were screened by repeat primed polymerase chain reaction and/or Southern blot. Main Outcomes and Measures Clinical information, muscle imaging data obtained by either computed tomography or magnetic resonance imaging, and muscle pathologic characteristics. Results Sixty-five Japanese patients with OPDM (40 men [62%]; mean [SD] age at onset, 41.0 [10.1] years) from 59 families with CGG repeat expansions in LRP12 were identified. This represents the most common OPDM subtype among all patients in Japan with genetically diagnosed OPDM. The expansions ranged from 85 to 289 repeats. A negative correlation was observed between the repeat size and the age at onset (r2 = 0.188, P = .001). The most common initial symptoms were ptosis and muscle weakness, present in 24 patients (37%). Limb muscle weakness was predominantly distal in 53 of 64 patients (83%), but 2 of 64 patients (3%) had predominantly proximal muscle weakness. Ptosis was observed in 62 of 64 patients (97%), and dysphagia or dysarthria was observed in 63 of 64 patients (98%). A total of 21 of 64 patients (33%) had asymmetric muscle weakness. Aspiration pneumonia was seen in 11 of 64 patients (17%), and 5 of 64 patients (8%) required mechanical ventilation. Seven of 64 patients (11%) developed cardiac abnormalities, and 5 of 64 patients (8%) developed neurologic abnormalities. Asymmetric muscle involvement was detected on computed tomography scans in 6 of 27 patients (22%) and on magnetic resonance imaging scans in 4 of 15 patients (27%), with the soleus and the medial head of the gastrocnemius being the worst affected. All 42 muscle biopsy samples showed rimmed vacuoles. Intranuclear tubulofilamentous inclusions were observed in only 1 of 5 patients. Conclusions and Relevance This study suggests that OPDM_LRP12 is the most frequent OPDM subtype in Japan and is characterized by oculopharyngeal weakness, distal myopathy that especially affects the soleus and gastrocnemius muscles, and rimmed vacuoles in muscle biopsy.
Collapse
Affiliation(s)
- Theerawat Kumutpongpanich
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Masashi Ogasawara
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Ayami Ozaki
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, The University of Tokyo Hospital, Tokyo, Japan
| | - Shoji Tsuji
- Department of Neurology, The University of Tokyo Hospital, Tokyo, Japan
| | - Narihiro Minami
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Shinichiro Hayashi
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Satoru Noguchi
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Aritoshi Iida
- Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.,Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | | | - Madoka Mori-Yoshimura
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yasushi Oya
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kenjiro Ono
- Division of Neurology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo, Japan
| | - Toshio Shimizu
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Akihiro Kawata
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Shun Shimohama
- Department of Neurology, Sapporo Medical University, Sapporo, Japan
| | - Keiko Toyooka
- Department of Neurology, Osaka Toneyama Medical Center, Osaka, Japan
| | - Kaoru Endo
- Department of Neurology, Tohoku University School of Medicine, Miyagi, Japan
| | - Shuta Toru
- Department of Neurology, Nitobe Memorial Nakano General Hospital, Tokyo, Japan
| | - Oga Sasaki
- Division of Neurology, Department of Internal Medicine, St Marianna University School of Medicine, Kanagawa, Japan
| | - Kenji Isahaya
- Division of Neurology, Department of Internal Medicine, St Marianna University School of Medicine, Kanagawa, Japan
| | - Masanori P Takahashi
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazuo Iwasa
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Jun-Ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuya Yamamoto
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Michi Kawamoto
- Department of Neurology, Kobe City Medical Center General Hospital, Kobe, Hyogo, Japan
| | - Tadanori Hamano
- Second Department of Internal Medicine, Division of Neurology, Department of Aging and Dementia, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Kazuma Sugie
- Department of Neurology, Nara Medical University, Nara, Japan
| | - Nobuyuki Eura
- Department of Neurology, Nara Medical University, Nara, Japan
| | - Tomo Shiota
- Department of Neurology, Nara Medical University, Nara, Japan
| | - Mizuho Koide
- Department of Neurology, Chiba-East National Hospital, Chiba, Japan
| | - Kanako Sekiya
- Department of Neurology, Niigata City General Hospital, Niigata, Japan
| | - Hideaki Kishi
- Department of Neurology, Asahikawa Medical Center, Asahikawa, Japan
| | - Takuto Hideyama
- Department of Neurology, Tokyo Medical University, Tokyo, Japan
| | - Shigeru Kawai
- Department of Neurology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Satoshi Yanagimoto
- Department of Neurology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Hiroyasu Sato
- Department of Neurology, Hematology, Metabolism, Endocrinology and Diabetology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Hajime Arahata
- Department of Neurology, National Hospital Organization Omuta National Hospital, Omuta, Japan
| | - Shigeo Murayama
- Department of Neurology and Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital, Institute of Gerontology, Tokyo, Japan
| | - Kayoko Saito
- Institute of Medical Genetics, Tokyo Women's Medical University, Shinjuku, Tokyo, Japan
| | - Hideo Hara
- Division of Neurology, Department of Internal Medicine, Saga University Faculty of Medicine, Saga, Japan
| | - Takashi Kanda
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Hiroshi Yaguchi
- Department of Neurology, The Jikei University Kashiwa Hospital, Kashiwa, Japan
| | - Noboru Imai
- Department of Neurology, Japanese Red Cross Shizuoka Hospital, Shizuoka, Japan
| | | | - Mitsuru Sanada
- Department of Neurology, Kanazawa Medical University Hospital, Ishikawa, Japan
| | - Kazuki Obara
- Department of Neurology, Anjo Kosei Hospital, Aichi, Japan
| | - Misako Kaido
- Department of Neurology, Sakai City Medical Center, Osaka, Japan
| | - Minori Furuta
- Department of Neurology, Gunma University, Maebashi, Japan
| | - Takashi Kurashige
- Department of Neurology, National Hospital Organization Kure Medical Center, Chugoku Cancer Center, Kure, Japan
| | - Wataru Hara
- Department of Neurology, Saitama Medical Center, Saitama, Japan
| | - Daisuke Kuzume
- Department of Neurology, Chikamori Hospital, Kochi, Japan
| | | | - Jun Tsugawa
- Department of Neurology, Fukuoka University, Fukuoka, Japan
| | - Hitaru Kishida
- Department of Neurology, Yokohama City University Medical Center, Yokohama, Japan
| | - Naoki Ishizuka
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Iwate, Japan
| | | | - Yukio Tsuji
- Department of Neurology, Kobe University, Kobe, Japan
| | - Atsuko Tsuneyama
- Department of Neurology, Narita Red Cross Hospital, Chiba, Japan
| | - Atsuhiro Matsuno
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto, Japan
| | - Ryo Sasaki
- Department of Neurology, Okayama University, Okayama, Japan
| | | | - Erika Abe
- Department of Neurology, National Hospital Organization Akita Hospital, Akita, Japan
| | - Shinichiro Yamada
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akiyuki Uzawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
6
|
Li L, Wang Y, Zhang N, Zhang Y, Lin J, Qiu X, Gui Y, Wang F, Li D, Wang L. Heterozygous deletion of LRP5 gene in mice alters profile of immune cells and modulates differentiation of osteoblasts. Biosci Trends 2018; 12:266-274. [PMID: 29899194 DOI: 10.5582/bst.2018.01013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Skeletal homeostasis is dynamically influenced by the immune system. Low density lipoprotein receptor-related protein-5 (LRP5) is a co-receptor of the Wnt signaling pathway, which modulates bone metabolism in humans and mice. Immune disorders can lead to abnormal bone metabolism. It is unclear whether and how LRP5 alters the balance of the immune system to modulate bone homeostasis. In this study, we used primary osteoblast to detect the differentiation of osteoblasts in vitro, the immune cells of spleen and bone marrow of 6-month old LRP5 heterozygote (HZ) and wild-type (WT) mice were analyzed by Flow cytometry. We found that LRP5+/- could influence the differentiation of osteoblasts by decreasing the mRNA level of Osterix, and increasing the mRNA level of Runx2 and the ratio of receptor activator for nuclear factor-κB ligand/osteoprotegerin (RANKL/OPG). In the LRP5+/- mice, percentages of NK cells, CD3e+ cells, and CD8a+ T cells were increased in both spleen and bone marrow, and percentages of CD106+ cells and CD11c+ cells were increased in spleen while decreased in bone marrow, conversely, CD62L+ cells were decreased in spleen while increased in bone marrow compared to the WT mice. Percentages of CD4+ cells, CD14+ cells, and CD254+ cells were increased in the spleen, and CTLA4+ cells were increased in the bone marrow of the LRP5+/- mice. The mRNA level of Wnt signaling molecules such as β-catenin, and c-myc were decreased and APC was increased in spleen lymphocytes and bone marrow lymphocytes, and the mRNA level of Wnt3a was decreased in spleen lymphocytes while no change in bone marrow lymphocytes was seen with silencing LRP5 by specific small interfering RNA. In conclusion, heterozygous deletion of the LRP5 gene in mice could alter the profile of the immune cells, influence the balance of immune environment, and modulate bone homeostasis, which might present a potential mechanism to explore the Wnt signaling pathway in the modulation of the immune system.
Collapse
Affiliation(s)
- Lisha Li
- Obstetrics and Gynecology Hospital of Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
| | - Yan Wang
- Obstetrics and Gynecology Hospital of Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
| | - Na Zhang
- Obstetrics and Gynecology Hospital of Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
| | - Yang Zhang
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine
| | - Jing Lin
- Obstetrics and Gynecology Hospital of Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
| | - Xuemin Qiu
- Obstetrics and Gynecology Hospital of Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
| | - Yuyan Gui
- Obstetrics and Gynecology Hospital of Fudan University
| | - Feifei Wang
- Obstetrics and Gynecology Hospital of Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
| | - Dajin Li
- Obstetrics and Gynecology Hospital of Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
| | - Ling Wang
- Obstetrics and Gynecology Hospital of Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases.,Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College
| |
Collapse
|
7
|
Zhang N, Zhang Y, Lin J, Qiu X, Chen L, Pan X, Lu Y, Zhang J, Wang Y, Li D, Wang L. Low-density lipoprotein receptor deficiency impaired mice osteoblastogenesis in vitro. Biosci Trends 2017; 11:658-666. [PMID: 29269714 DOI: 10.5582/bst.2017.01267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Postmenopausal osteoporosis affected most elderly women with co-existence of lipid and bone metabolism disorders. However, the cellular and molecular mechanisms underlying the parallel progression and cross-talk of these systems remained unclear. In the present study, low-density lipoprotein receptor knockout (LDLR-/-) mice were chosen to elucidate the effect of LDLR in regulating the differentiation of osteoblasts, which were responsible for bone formation and modulation of osteoclastogenesis. Primary osteoblasts were isolated from the calvarium of newborn LDLR-/- or wild-type mice followed by osteoblastic differentiation culture in vitro. Alkaline phosphatase activity was significantly decreased in LDLR-/- osteoblasts compared to wild-type controls, combined with calcium deposit formation delay, implying impaired osteoblastogenesis in vitro. Consistent with these findings, the expression of runt-related transcription factor 2 (Runx2) was decreased 3 days after differentiation in LDLR-/- osteoblasts compared to wild-type controls. Moreover, the expression of Osterix was decreased 7 days after differentiation in LDLR-/- osteoblasts compared to wild-type controls, later than Runx2.However, the osteoclastogenesis modulation role of osteoblasts was unaffected by the LDLR deficiency, evidenced by the same level of osteoprotegerin (OPG)/receptor activator of nuclear factor-κ B ligand (RANKL) axis between LDLR-/- and wild-type control osteoblasts. Our results provide a novel insight into the role of LDLR during osteoblastic differentiation and improve understanding of cross-talk between bone and lipid metabolisms.
Collapse
Affiliation(s)
- Na Zhang
- Hospital & Institute of Obstetrics and Gynecology, Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Yang Zhang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine
| | - Jing Lin
- Hospital & Institute of Obstetrics and Gynecology, Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Xuemin Qiu
- Hospital & Institute of Obstetrics and Gynecology, Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Lanting Chen
- Hospital & Institute of Obstetrics and Gynecology, Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Xinyao Pan
- Hospital & Institute of Obstetrics and Gynecology, Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Youhui Lu
- Hospital & Institute of Obstetrics and Gynecology, Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Jiali Zhang
- Hospital & Institute of Obstetrics and Gynecology, Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Yan Wang
- Hospital & Institute of Obstetrics and Gynecology, Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Dajin Li
- Hospital & Institute of Obstetrics and Gynecology, Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| | - Ling Wang
- Hospital & Institute of Obstetrics and Gynecology, Fudan University.,The Academy of Integrative Medicine of Fudan University.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases
| |
Collapse
|