1
|
Kuzuluk DG, Secinti IE, Erturk T, Hakverdi S, Gorur S, Ozatlan D. Ribosome-binding protein-1 (RRBP1) expression in prostate carcinomas and its relationship with clinicopathological prognostic factors. Scott Med J 2024; 69:83-87. [PMID: 38711311 DOI: 10.1177/00369330241245730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
INTRODUCTION Studies in recent years have shown that ribosome-binding protein-1 (RRBP1) is expressed at high rates in many cancers and that it may be a potential prognostic biomarker. The objective of the present study is to determine the RRBP1 expression level in prostatic carcinoma and neighboring non-neoplastic prostate tissue, the relationship between its expression level with prognostic factors, and the role of RRBP1 in the development of prostate cancer. MATERIALS AND METHODS The study included 45 patients who were diagnosed with prostatic carcinoma and underwent radical prostatectomy in our center between the years 2010 and 2021. Pathology reports were reviewed. Mann-Whitney U test was used for the comparison of RRBP1 and GADPH values of the cases (control and tumoral tissue) between the primary tumor stage (pT) and Gleason score (GS) groups. Hierarchical regression analysis was used to explain the effective variables in explaining the RRBP1 value of the research cases. RESULTS According to the Mann-Whitney U test, mean and median RRBP1-T values of the cases with GS ≥ 8 were detected to be statistically significantly higher than the mean and median RRBP1-T values of the cases with GS < 8. CONCLUSION We found out that RRBP1 was expressed at higher rates in patients with high GS and advanced-stage patients. This result indicated that RRBP1 expression may be important in predicting the prognosis of prostate carcinoma.
Collapse
Affiliation(s)
- Didar Gursoy Kuzuluk
- Faculty of Medicine, Department of Pathology, Hatay Mustafa Kemal University, Antakya, Turkey
| | - Ilke Evrim Secinti
- Faculty of Medicine, Department of Pathology, Hatay Mustafa Kemal University, Antakya, Turkey
| | - Tugce Erturk
- Faculty of Medicine, Department of Pathology, Hatay Mustafa Kemal University, Antakya, Turkey
| | - Sibel Hakverdi
- Faculty of Medicine, Department of Pathology, Hatay Mustafa Kemal University, Antakya, Turkey
| | - Sadik Gorur
- Faculty of Medicine, Department of Urology, Hatay Mustafa Kemal University, Antakya, Turkey
| | | |
Collapse
|
2
|
Hui B, Zhou C, Xu Y, Wang R, Dong Y, Zhou Y, Ding J, Zhang X, Xu J, Gu Y. Exosomes secreted by Fusobacterium nucleatum-infected colon cancer cells transmit resistance to oxaliplatin and 5-FU by delivering hsa_circ_0004085. J Nanobiotechnology 2024; 22:62. [PMID: 38360615 PMCID: PMC10867993 DOI: 10.1186/s12951-024-02331-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/05/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND A large number of Fusobacterium nucleatum (Fn) are present in colorectal cancer (CRC) tissues of patients who relapse after chemotherapy, and Fn has been reported to promote oxaliplatin and 5-FU chemoresistance in CRC. Pathogens such as bacteria and parasites stimulate exosome production in tumor cells, and the regulatory mechanism of exosomal circRNA in the transmission of oxaliplatin and 5-FU chemotherapy resistance in Fn-infected CRC remains unclear. METHODS Hsa_circ_0004085 was screened by second-generation sequencing of CRC tissues. The correlation between hsa_circ_0004085 and patient clinical response to oxaliplatin/5-FU was analyzed. Exosome tracing experiments and live imaging systems were used to test the effect of Fn infection in CRC on the distribution of hsa_circ_0004085. Colony formation, ER tracking analysis and immunofluorescence were carried out to verify the regulatory effect of exosomes produced by Fn-infected CRC cells on chemotherapeutic resistance and ER stress. RNA pulldown, LC-MS/MS analysis and RIP were used to explore the regulatory mechanism of downstream target genes by hsa_circ_0004085. RESULTS First, we screened out hsa_circ_0004085 with abnormally high expression in CRC clinical samples infected with Fn and found that patients with high expression of hsa_circ_0004085 in plasma had a poor clinical response to oxaliplatin/5-FU. Subsequently, the circular structure of hsa_circ_0004085 was identified. Fn infection promoted hsa_circ_0004085 formation by hnRNP L and packaged hsa_circ_0004085 into exosomes by hnRNP A1. Exosomes produced by Fn-infected CRC cells transferred hsa_circ_0004085 between cells and delivered oxaliplatin/5-FU resistance to recipient cells by relieving ER stress. Hsa_circ_0004085 enhanced the stability of GRP78 mRNA by binding to RRBP1 and promoted the nuclear translocation of ATF6p50 to relieve ER stress. CONCLUSIONS Plasma levels of hsa_circ_0004085 are increased in colon cancer patients with intracellular Fn and are associated with a poor response to oxaliplatin/5-FU. Fn infection promoted hsa_circ_0004085 formation by hnRNP L and packaged hsa_circ_0004085 into exosomes by hnRNP A1. Exosomes secreted by Fn-infected CRC cells deliver hsa_circ_0004085 between cells. Hsa_circ_0004085 relieves ER stress in recipient cells by regulating GRP78 and ATF6p50, thereby delivering resistance to oxaliplatin and 5-FU.
Collapse
Affiliation(s)
- Bingqing Hui
- Department of Oncology and Cancer Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chenchen Zhou
- Department of Oncology and Cancer Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yetao Xu
- The First Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Wang
- Department of Oncology and Cancer Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuwen Dong
- Department of Oncology and Cancer Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yirui Zhou
- Department of Oncology and Cancer Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- The First Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Ding
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Zhang
- Department of Oncology and Cancer Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
- The First Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Jian Xu
- Department of General Surgery, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Yanhong Gu
- Department of Oncology and Cancer Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
- The First Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Liu H, Shi Y, Zhan J, Liu Y, Zhou J, Su B, Chen Y, Wang L, Chen L. ENST00000438158 aids ultrasound for predicting lymph node metastasis and inhibits migration and invasion of papillary thyroid carcinoma cells. Drug Discov Ther 2023; 17:26-36. [PMID: 36261389 DOI: 10.5582/ddt.2022.01061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cervical lymph node metastasis (CLNM) of papillary thyroid carcinoma (PTC) is directly associated with clinical management and prognosis. In this study, we aimed to evaluate the value of conventional ultrasound (US) combined with ENST00000438158 in predicting CLNM of PTC. Fourty-nine PTC patients underwent US examination and US-guided fine needle aspiration (FNA). ENST00000438158 expression in FNA cytological specimens and PTC cell lines was detected using real-time reverse transcription polymerase chain reaction (qRT-PCR). The role of ENST00000438158 expression in the proliferation, migration, invasion, apoptosis, and cell cycle of PTC cells was investigated by Cell Counting Kit-8 (CCK8) and clone formation experiments, transwell assay, and flow cytometry, respectively. Calcification, capsule contact, and low ENST00000438158 expression were independently associated with PTC with CLNM (all p < 0.05). The combination of multiple US features was more valuable than a single US feature in predicting CLNM in PTC. Adding ENST0000438158 to US greatly improved the value of differentiation of PTC with or without CLNM. In conclusion, ENST00000438158 is a potential molecular marker for predicting CLNM in PTC. ENST00000438158 combined with US features is highly valuable for predicting CLNM in PTC.
Collapse
Affiliation(s)
- Hui Liu
- Department of Ultrasound, Huadong Hospital, Fudan University, Shanghai, China
| | - Yixin Shi
- Department of Ultrasound, Huadong Hospital, Fudan University, Shanghai, China
| | - Jia Zhan
- Department of Ultrasound, Huadong Hospital, Fudan University, Shanghai, China
| | - Yingchun Liu
- Department of Ultrasound, Huadong Hospital, Fudan University, Shanghai, China
| | - Jing Zhou
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,The Academy of Integrative Medicine of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Biao Su
- Department of Ultrasound, Huadong Hospital, Fudan University, Shanghai, China
| | - Yue Chen
- Department of Ultrasound, Huadong Hospital, Fudan University, Shanghai, China
| | - Ling Wang
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,The Academy of Integrative Medicine of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Lin Chen
- Department of Ultrasound, Huadong Hospital, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Ramírez-Torres A, Gil J, Contreras S, Ramírez G, Valencia-González HA, Salazar-Bustamante E, Gómez-Caudillo L, García-Carranca A, Encarnación-Guevara S. Quantitative Proteomic Analysis of Cervical Cancer Tissues Identifies Proteins Associated With Cancer Progression. Cancer Genomics Proteomics 2022; 19:241-258. [PMID: 35181591 DOI: 10.21873/cgp.20317] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/09/2021] [Accepted: 01/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND/AIM To date, several proteomics studies in cervical cancer (CC) have focused mainly on squamous cervical cancer (SCC). Our study aimed to discover and clarify differences in SCC and CAD that may provide valuable information for the identification of proteins involved in tumor progression, in CC as a whole, or specific for SCC or CAD. MATERIALS AND METHODS Total protein extracts from 15 individual samples corresponding to 5 different CC tissue types were compared with a non-cancerous control group using bidimensional liquid chromatography-mass spectrometry (2D LC-MS/MS), isobaric tags for relative and absolute quantitation (ITRAQ), principal component analysis (PCA) and gene set enrichment analysis (GSEA). RESULTS A total of 622 statistically significant different proteins were detected. Exocytosis-related proteins were the most over-represented, accounting for 25% of the identified and quantified proteins. Based on the experimental results, reticulocalbin 3 (RCN3) and Ras-related protein Rab-14 (RAB14) were chosen for further downstream in vitro and vivo analyses. RCN3 was overexpressed in all CC tissues compared to the control and RAB14 was overexpressed in squamous cervical cancer (SCC) compared to invasive cervical adenocarcinoma (CAD). In the tumor xenograft experiment, RAB14 protein expression was positively correlated with increased tumor size. In addition, RCN3-expressing HeLa cells induced a discrete size increment compared to control, at day 47 after inoculation. CONCLUSION RAB14 and RCN3 are suggested as potential biomarkers and therapeutic targets in the treatment of CC.
Collapse
Affiliation(s)
- Alberto Ramírez-Torres
- Proteomics, Center for Genomic Sciences, The National Autonomous University of Mexico (UNAM), Cuernavaca, Mexico
| | - Jeovanis Gil
- Proteomics, Center for Genomic Sciences, The National Autonomous University of Mexico (UNAM), Cuernavaca, Mexico.,Division of Oncology, Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Lund, Sweden
| | - Sandra Contreras
- Proteomics, Center for Genomic Sciences, The National Autonomous University of Mexico (UNAM), Cuernavaca, Mexico
| | - Graciela Ramírez
- The National Institute of Cancerology (INCan), Mexico City, Mexico
| | | | - Emmanuel Salazar-Bustamante
- Proteomics, Center for Genomic Sciences, The National Autonomous University of Mexico (UNAM), Cuernavaca, Mexico
| | - Leopoldo Gómez-Caudillo
- Proteomics, Center for Genomic Sciences, The National Autonomous University of Mexico (UNAM), Cuernavaca, Mexico
| | | | - Sergio Encarnación-Guevara
- Proteomics, Center for Genomic Sciences, The National Autonomous University of Mexico (UNAM), Cuernavaca, Mexico;
| |
Collapse
|
5
|
Banik K, Khatoon E, Hegde M, Thakur KK, Puppala ER, Naidu VGM, Kunnumakkara AB. A novel bioavailable curcumin-galactomannan complex modulates the genes responsible for the development of chronic diseases in mice: A RNA sequence analysis. Life Sci 2021; 287:120074. [PMID: 34687757 DOI: 10.1016/j.lfs.2021.120074] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/10/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Chronic diseases or non-communicable diseases are a major burden worldwide due to the lack of highly efficacious treatment modalities and the serious side effects associated with the available therapies. PURPOSE/STUDY DESIGN A novel self-emulsifying formulation of curcumin with fenugreek galactomannan hydrogel scaffold as a water-dispersible non-covalent curcumin-galactomannan molecular complex (curcumagalactomannosides, CGM) has shown better bioavailability than curcumin and can be used for the prevention and treatment of chronic diseases. However, the exact potential of this formulation has not been studied, which would pave the way for its use for the prevention and treatment of multiple chronic diseases. METHODS The whole transcriptome analysis (RNAseq) was used to identify differentially expressed genes (DEGs) in the liver tissues of mice treated with LPS to investigate the potential of CGM on the prevention and treatment of chronic diseases. Expression analysis using DESeq2 package, GO, and pathway analysis of the differentially expressed transcripts was performed using UniProtKB and KEGG-KAAS server. RESULTS The results showed that 559 genes differentially expressed between the liver tissue of control mice and CGM treated mice (100 mg/kg b.wt. for 14 days), with adjusted p-value below 0.05, of which 318 genes were significantly upregulated and 241 were downregulated. Further analysis showed that 33 genes which were upregulated (log2FC > 8) in the disease conditions were significantly downregulated, and 32 genes which were downregulated (log2FC < -8) in the disease conditions were significantly upregulated after the treatment with CGM. CONCLUSION Overall, our study showed CGM has high potential in the prevention and treatment of multiple chronic diseases.
Collapse
Affiliation(s)
- Kishore Banik
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Elina Khatoon
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Eswara Rao Puppala
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Educational Research (NIPER) Guwahati, Assam, India
| | - V G M Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Educational Research (NIPER) Guwahati, Assam, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India.
| |
Collapse
|
6
|
Wang W, Wang M, Xiao Y, Wang Y, Ma L, Guo L, Wu X, Lin X, Zhang P. USP35 mitigates endoplasmic reticulum stress-induced apoptosis by stabilizing RRBP1 in non-small cell lung cancer. Mol Oncol 2021; 16:1572-1590. [PMID: 34618999 PMCID: PMC8978513 DOI: 10.1002/1878-0261.13112] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/17/2021] [Accepted: 10/05/2021] [Indexed: 12/25/2022] Open
Abstract
Deubiquitinating enzymes (DUBs) serve to maintain cellular homeostasis via protein ubiquitination and exert diverse regulatory functions in cancers and other diseases. Much progress has been made in characterizing biological roles of DUBs over the decades, yet the specific functions of many subclass members remain largely unexplored. It was not until recent years that the role of ubiquitin‐specific‐processing protease 35 (USP35) in cancers began to be understood. Here, we focus on delineating the roles and underlying mechanisms of USP35 in non‐small cell lung cancer (NSCLC). The isobaric tags for relative and absolute quantitation (iTRAQ) comparative proteomic approach were employed to identify differentially expressed proteins (DEPs) in H1299 cells induced by USP35 overexpression or silencing. Among the potential interactome of USP35, ribosome‐binding protein 1 (RRBP1), a membrane‐bound protein in endoplasmic reticulum (ER), captured our attentions. RRBP1 expression was found to positively correlate with USP35 levels in both genetically modified cells and human NSCLC tissues. Concordantly, both RRBP1 expression and USP35 expression were found to positively correlate with poor prognoses in lung adenocarcinoma patients. At the molecular level, USP35 was verified to directly interact with RRBP1 to prevent it from proteasomal‐dependent degradation. Functionally, USP35 alleviated ER stress‐induced cell apoptosis by stabilizing RRBP1 in NSCLC cells. Collectively, these findings indicate that USP35 plays a critical role in resisting ER stress‐induced cell death through deubiquitinating RRBP1, hence providing a rationale to target the USP35‐RRBP1 axis as an alternative therapeutic option for NSCLC.
Collapse
Affiliation(s)
- Wenqing Wang
- Department of Biochemistry and Molecular Biology, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Meixia Wang
- Department of Internal Medicine, Qingdao Fuwai Cardiovascular Hospital, China
| | - Yi Xiao
- Department of Biochemistry and Molecular Biology, Shandong University School of Basic Medical Sciences, Jinan, China.,Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yige Wang
- Department of Biochemistry and Molecular Biology, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Lijuan Ma
- Department of Biochemistry and Molecular Biology, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Lulu Guo
- Department of Biochemistry and Molecular Biology, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Xinyue Wu
- Department of Biochemistry and Molecular Biology, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Xiaoyan Lin
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Pengju Zhang
- Department of Biochemistry and Molecular Biology, Shandong University School of Basic Medical Sciences, Jinan, China
| |
Collapse
|