1
|
Zhang T, Tang X. Untangling immune cell contributions in the progression from GERD to Barrett's esophagus and esophageal cancer: Insights from genetic causal analysis. Int Immunopharmacol 2025; 150:114271. [PMID: 39965389 DOI: 10.1016/j.intimp.2025.114271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/30/2025] [Accepted: 02/07/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND Esophageal adenocarcinoma (EAC) is a rapidly increasing malignancy with significant morbidity and mortality. The progression from gastroesophageal reflux disease (GERD) to Barrett's esophagus (BE) and ultimately to EAC is thought to be influenced by chronic inflammation and immune cell dynamics. Despite the observed correlations in observational studies, the causal relationships between immune cell phenotypes and this disease continuum remain unclear. METHODS This study utilized a two-sample Mendelian Randomization (MR) approach to investigate the causal roles of 731 distinct immune cell phenotypes in the GERD-BE-EAC continuum. The analysis leveraged genome-wide association study (GWAS) data for immune phenotypes from a Sardinian cohort and data for GERD, BE, and EAC from the FinnGen and Open GWAS databases. A comprehensive set of MR methods, including inverse variance weighted (IVW), MR-Egger, and weighted median estimators, was employed to assess causality. Sensitivity analyses were conducted to evaluate heterogeneity and pleiotropy, ensuring the robustness of the findings. RESULTS The study revealed complex and multifaceted roles of immune cells across the GERD-BE-EAC continuum. In GERD, 34 immune phenotypes were found to be causally associated with either increased or decreased risk. Protective effects were observed in phenotypes such as Unswitched Memory B cells, while others like CD45RA- CD4+ T cells were linked to an elevated risk. In the context of BE, 28 immune phenotypes demonstrated significant causal associations, with the majority being protective, including Unswitched Memory B cells and CD62L on Granulocytes. Conversely, certain phenotypes, such as CD24 on Transitional B cells, were identified as risk factors for BE. For EAC, 34 immune phenotypes were implicated, with various B cell subsets, particularly those expressing BAFF-R and CD24, associated with an increased risk, while Switched Memory B cells and specific myeloid cell phenotypes showed protective effects. CONCLUSIONS This study provides novel insights into the complex role of immune cells in the pathogenesis of EAC, revealing a dynamic interplay where certain immune phenotypes may be protective in early stages but become risk-enhancing in later stages of disease progression. These findings highlight the potential of immune cell phenotypes to serve as biomarkers for early detection and targeted therapeutic interventions across the GERD-BE-EAC continuum. Further research is warranted to validate these findings in diverse populations and to explore the underlying mechanisms driving these immune-mediated effects.
Collapse
Affiliation(s)
- Tai Zhang
- Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), Peking University Health Science Center, Beijing 100091, China; Peking University Health Science Center, Beijing 100191, China
| | - Xudong Tang
- Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), Peking University Health Science Center, Beijing 100091, China; Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| |
Collapse
|
2
|
Wu J, Wu Y, Chen S, Guo Q, Shao Y, Liu C, Lin K, Wang S, Zhu J, Chen X, Ju X, Xia L, Wu X. PARP1-stabilised FOXQ1 promotes ovarian cancer progression by activating the LAMB3/WNT/β-catenin signalling pathway. Oncogene 2024; 43:866-883. [PMID: 38297082 DOI: 10.1038/s41388-024-02943-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 02/02/2024]
Abstract
Metastasis is an important factor that causes ovarian cancer (OC) to become the most lethal malignancy of the female reproductive system, but its molecular mechanism is not fully understood. In this study, through bioinformatics analysis, as well as analysis of tissue samples and clinicopathological characteristics and prognosis of patients in our centre, it was found that Forkhead box Q1 (FOXQ1) was correlated with metastasis and prognosis of OC. Through cell function experiments and animal experiments, the results show that FOXQ1 can promote the progression of ovarian cancer in vivo and in vitro. Through RNA-seq, chromatin immunoprecipitation sequencing (ChIP-seq), Kyoto Encyclopedia of Genes and Genomes (KEGG), gene set enrichment analysis (GSEA), Western blotting (WB), quantitative real-time polymerase chain reaction (qRT‒PCR), immunohistochemistry (IHC), luciferase assay, and ChIP-PCR, it was demonstrated that FOXQ1 can mediate the WNT/β-catenin pathway by targeting the LAMB promoter region. Through coimmunoprecipitation (Co-IP), mass spectrometry (MS), ubiquitination experiments, and immunofluorescence (IF), the results showed that PARP1 could stabilise FOXQ1 expression via the E3 ubiquitin ligase Hsc70-interacting protein (CHIP). Finally, the whole mechanism pathway was verified by animal drug combination experiments and clinical specimen prognosis analysis. In summary, our results suggest that PARP1 can promote ovarian cancer progression through the LAMB3/WNT/β-catenin pathway by stabilising FOXQ1 expression.
Collapse
Affiliation(s)
- Jiangchun Wu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Yong Wu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Siyu Chen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Qinhao Guo
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Yang Shao
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Chaohua Liu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Kailin Lin
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Simin Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Jun Zhu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Xiaojun Chen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Xingzhu Ju
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Lingfang Xia
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Xiaohua Wu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
| |
Collapse
|