1
|
Dmitrzak-Węglarz M, Rybakowski J, Szczepankiewicz A, Kapelski P, Lesicka M, Jabłońska E, Reszka E, Pawlak J. Identification of shared disease marker genes and underlying mechanisms between major depression and rheumatoid arthritis. J Psychiatr Res 2023; 168:22-29. [PMID: 37871462 DOI: 10.1016/j.jpsychires.2023.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/28/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
Both depression and rheumatoid arthritis (RA) have a very high comorbidity rate. A bilateral association is estimated to increase the mutual risk and the common denominator is inflammation being observed in both diseases. Previous studies have mainly focused on assessing peripheral blood's inflammatory and pro-inflammatory cytokines levels. We aimed to extend insights into the molecular mechanisms of depression based on hub RA genes. To do so, we prioritized RA-related genes using in-silico tools. We then investigated whether RA-related genes undergo altered expression in patients with unipolar and bipolar depression without a concurrent RA diagnosis and any exponents of active inflammation. In addition, we selected a homogeneous group of patients treated with lithium (Li), which has immunomodulatory properties. The study was performed on patients with bipolar depression (BD, n = 45; Li, n = 20), unipolar depression (UD, n = 27), and healthy controls (HC, n = 22) of both sexes. To identify DEGs in peripheral blood mononuclear cells (PBMCs), we used the SurePrint G3 Microarray and GeneSpring software. We selected a list of 180 hub genes whose altered expression we analyzed using the expression microarray results. In the entire study group, we identified altered expression of 93 of the 180 genes, including 35 down-regulated (OPRM1 gene with highest FC > 3) and 58 up-regulated (TLR4 gene with highest FC > 3). In UD patients, we observed maximally up-regulated expression of the TEK gene (FC > 3), and in BD of the CXCL8 gene (FC > 5). On the other hand, in lithium-treated patients, the gene with the most reduced expression was the TRPV1 gene. The study proved that depression and RA are produced by a partially shared "inflammatory interactome" in which the opioid and angiogenesis pathways are important.
Collapse
Affiliation(s)
| | - Janusz Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poland.
| | - Aleksandra Szczepankiewicz
- Laboratory of Molecular and Cell Biology, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poland.
| | - Paweł Kapelski
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poland.
| | - Monika Lesicka
- Department of Translational Research, Nofer Institute of Occupational Medicine, Lodz, Poland.
| | - Ewa Jabłońska
- Department of Translational Research, Nofer Institute of Occupational Medicine, Lodz, Poland.
| | - Edyta Reszka
- Department of Translational Research, Nofer Institute of Occupational Medicine, Lodz, Poland.
| | - Joanna Pawlak
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poland.
| |
Collapse
|
2
|
Blood Vessels as a Key Mediator for Ethanol Toxicity: Implication for Neuronal Damage. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111882. [PMID: 36431016 PMCID: PMC9696276 DOI: 10.3390/life12111882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Excessive intake of ethanol is associated with severe brain dysfunction, and the subsequent neurological and behavioral abnormalities are well-established social risks. Many research studies have addressed how ethanol induces neurological toxicity. However, the underlying mechanisms with which ethanol induces neurological toxicity are still obscure, perhaps due to the variety and complexity of these mechanisms. Epithelial cells are in direct contact with blood and can thus mediate ethanol neurotoxicity. Ethanol activates the endothelial cells of blood vessels, as well as lymphatic vessels, in a concentration-dependent manner. Among various signaling mediators, nitric oxide plays important roles in response to ethanol. Endothelial and inducible nitric oxide synthases (eNOS and iNOS) are upregulated and activated by ethanol and enhance neuroinflammation. On the other hand, angiogenesis and blood vessel remodeling are both affected by ethanol intake, altering blood supply and releasing angiocrine factors to regulate neuronal functions. Thus, ethanol directly acts on endothelial cells, yet the molecular target(s) on endothelial cells remain unknown. Previous studies on neurons and glial cells have validated the potential contribution of membrane lipids and some specific proteins as ethanol targets, which may also be the case in endothelial cells. Future studies, based on current knowledge, will allow for a greater understanding of the contribution and underlying mechanisms of endothelial cells in ethanol-induced neurological toxicity, protecting neurological health against ethanol toxicity.
Collapse
|
3
|
Zhang S, Lu Y, Shi W, Ren Y, Xiao K, Chen W, Li L, Zhao J. SIRT1/FOXO1 Axis-Mediated Hippocampal Angiogenesis is Involved in the Antidepressant Effect of Chaihu Shugan San. Drug Des Devel Ther 2022; 16:2783-2801. [PMID: 36039087 PMCID: PMC9419814 DOI: 10.2147/dddt.s370825] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/12/2022] [Indexed: 11/23/2022] Open
Abstract
Objective Methods Results Conclusion
Collapse
Affiliation(s)
- Shan Zhang
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Yujia Lu
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Wei Shi
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Yi Ren
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Kaihui Xiao
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Wei Chen
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Li Li
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Jingjie Zhao
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
- Department of Integrated Traditional and Western Medicine, Capital Medical University, Beijing, 100050, People’s Republic of China
- Correspondence: Jingjie Zhao, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Beijing, 100050, People’s Republic of China, Tel/Fax +86 10-63139096, Email
| |
Collapse
|
4
|
McGrory CL, Ryan KM, Kolshus E, McLoughlin DM. Peripheral blood E2F1 mRNA in depression and following electroconvulsive therapy. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:380-385. [PMID: 30365982 DOI: 10.1016/j.pnpbp.2018.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/19/2018] [Accepted: 10/21/2018] [Indexed: 12/28/2022]
Abstract
The E2F transcription factors are a group of proteins that bind to the promotor region of the adenovirus E2 gene. E2F1, the first family member to be cloned, is linked to functions including cell proliferation and apoptosis, DNA repair, cell senescence and metabolism. We recently performed a deep sequencing study of micro-RNA changes in whole blood following ECT. Two micro-RNAs (miR-126-3p and miR-106a-5p) were identified and gene targeting analysis identified E2F1 as a shared target of these miRNAs. To our knowledge, no studies have examined E2F1 mRNA levels in patients with depression. Peripheral blood E2F1 mRNA levels were therefore examined in patients with depression, compared to healthy controls, and the effects of a course of ECT on peripheral blood E2F1 mRNA was investigated. Depressed patient and healthy control groups were balanced on the basis of age and sex. E2F1 mRNA levels were significantly lower in depressed patients in comparison to controls (p = .009) but did not change with ECT. There was no relationship between baseline E2F1 levels and depression severity, response to treatment, presence of psychosis or polarity of depression. There were no significant correlations between E2F1 levels and mood scores based on the HAM-D24. These results indicate that reduced peripheral blood E2F1 mRNA could be a trait feature of depression.
Collapse
Affiliation(s)
- Claire L McGrory
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland; Department of Psychiatry, Trinity College Dublin, St Patrick's University Hospital, Dublin 8, Ireland
| | - Karen M Ryan
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland; Department of Psychiatry, Trinity College Dublin, St Patrick's University Hospital, Dublin 8, Ireland
| | - Erik Kolshus
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland; Department of Psychiatry, Trinity College Dublin, St Patrick's University Hospital, Dublin 8, Ireland
| | - Declan M McLoughlin
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland; Department of Psychiatry, Trinity College Dublin, St Patrick's University Hospital, Dublin 8, Ireland.
| |
Collapse
|
5
|
Levy MJF, Boulle F, Steinbusch HW, van den Hove DLA, Kenis G, Lanfumey L. Neurotrophic factors and neuroplasticity pathways in the pathophysiology and treatment of depression. Psychopharmacology (Berl) 2018; 235:2195-2220. [PMID: 29961124 PMCID: PMC6061771 DOI: 10.1007/s00213-018-4950-4] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/18/2018] [Indexed: 02/06/2023]
Abstract
Depression is a major health problem with a high prevalence and a heavy socioeconomic burden in western societies. It is associated with atrophy and impaired functioning of cortico-limbic regions involved in mood and emotion regulation. It has been suggested that alterations in neurotrophins underlie impaired neuroplasticity, which may be causally related to the development and course of depression. Accordingly, mounting evidence suggests that antidepressant treatment may exert its beneficial effects by enhancing trophic signaling on neuronal and synaptic plasticity. However, current antidepressants still show a delayed onset of action, as well as lack of efficacy. Hence, a deeper understanding of the molecular and cellular mechanisms involved in the pathophysiology of depression, as well as in the action of antidepressants, might provide further insight to drive the development of novel fast-acting and more effective therapies. Here, we summarize the current literature on the involvement of neurotrophic factors in the pathophysiology and treatment of depression. Further, we advocate that future development of antidepressants should be based on the neurotrophin theory.
Collapse
Affiliation(s)
- Marion J F Levy
- Centre de Psychiatrie et Neurosciences (Inserm U894), Université Paris Descartes, 102-108 rue de la santé, 75014, Paris, France
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Fabien Boulle
- Centre de Psychiatrie et Neurosciences (Inserm U894), Université Paris Descartes, 102-108 rue de la santé, 75014, Paris, France
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Harry W Steinbusch
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Daniël L A van den Hove
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Gunter Kenis
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Laurence Lanfumey
- Centre de Psychiatrie et Neurosciences (Inserm U894), Université Paris Descartes, 102-108 rue de la santé, 75014, Paris, France.
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands.
| |
Collapse
|
6
|
Liang M, Du Y, Li W, Yin X, Yang N, Qie A, Lebaron TW, Zhang J, Chen H, Shi H. SuHeXiang Essential Oil Inhalation Produces Antidepressant- and Anxiolytic-Like Effects in Adult Mice. Biol Pharm Bull 2018; 41:1040-1048. [DOI: 10.1248/bpb.b18-00082] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Min Liang
- College of Nursing, Hebei Medical University
| | - Yuru Du
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University
| | - Wenjing Li
- College of Nursing, Hebei Medical University
| | - Xi Yin
- Department of Functional Region of Diagnosis, Hebei Medical University Fourth Hospital, Hebei Medical University
| | - Ni Yang
- Grade Undergraduate, College of Basic Medicine, Hebei Medical University
| | - Anran Qie
- Grade Undergraduate, College of Basic Medicine, Hebei Medical University
| | | | - Jiayu Zhang
- Grade Undergraduate, College of Basic Medicine, Hebei Medical University
| | | | - Haishui Shi
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University
- the Center of Neuroscience, Institute of Health and Science, Hebei Medical University
| |
Collapse
|
7
|
Kolshus E, Ryan KM, Blackshields G, Smyth P, Sheils O, McLoughlin DM. Peripheral blood microRNA and VEGFA mRNA changes following electroconvulsive therapy: implications for psychotic depression. Acta Psychiatr Scand 2017; 136:594-606. [PMID: 28975998 DOI: 10.1111/acps.12821] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2017] [Indexed: 12/26/2022]
Abstract
OBJECTIVE MicroRNAs are short, non-coding molecules that regulate gene expression. Here, we investigate the role of microRNAs in depression and electroconvulsive therapy (ECT). METHODS We performed three studies: a deep sequencing discovery-phase study of miRNA changes in whole blood following ECT (n = 16), followed by a validation study in a separate cohort of patients pre-/post-ECT (n = 37) and matched healthy controls (n = 34). Changes in an experimentally validated gene target (VEGFA) were then analysed in patients pre-/post-ECT (n = 97) and in matched healthy controls (n = 53). RESULTS In the discovery-phase study, we found no statistically significant differences in miRNA expression from baseline to end of treatment in the group as a whole, but post hoc analysis indicated a difference in patients with psychotic depression (n = 3). In a follow-up validation study, patients with psychotic depression (n = 7) had elevated baseline levels of miR-126-3p (t = 3.015, P = 0.006) and miR-106a-5p (t = 2.598, P = 0.025) compared to healthy controls. Following ECT, these differences disappeared. Baseline VEGFA levels were significantly higher in depressed patients compared to healthy controls (F(1,144) = 27.688, P = <0.001). Following ECT, there was a significant change in VEGFA levels in the psychotic group only (t = 2.915, P = 0.010). CONCLUSION Molecular differences (miRNA and VEGFA) may exist between psychotic and non-psychotic depression treated with ECT.
Collapse
Affiliation(s)
- E Kolshus
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland.,Department of Psychiatry, Trinity College Dublin, St Patrick's University Hospital, Dublin 8, Ireland
| | - K M Ryan
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland.,Department of Psychiatry, Trinity College Dublin, St Patrick's University Hospital, Dublin 8, Ireland
| | - G Blackshields
- Department of Histopathology, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland
| | - P Smyth
- Department of Histopathology, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland
| | - O Sheils
- Department of Histopathology, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland
| | - D M McLoughlin
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland.,Department of Psychiatry, Trinity College Dublin, St Patrick's University Hospital, Dublin 8, Ireland
| |
Collapse
|
8
|
Abstract
A significant number of patients with major depression do not respond optimally to current antidepressant drugs. As depression is likely to be a heterogeneous disorder, it is possible that existing neurotransmitter-based antidepressant drugs do not fully address other pathologies that may exist in certain cases. Biological pathologies related to depression that have been proposed and studied extensively include inflammation and immunology, hypercortisolemia, oxidative stress, and impaired angiogenesis. Such pathologies may induce neurodegeneration, which in turn causes cognitive impairment, a symptom increasingly being recognized in depression. A neurotoxic brain hypothesis unifying all these factors may explain the heterogeneity of depression as well as cognitive decline and antidepressant drug resistance in some patients. Compared with neurotransmitter-based antidepressant drugs, many botanical compounds in traditional medicine used for the treatment of depression and its related symptoms have been discovered to be anti-inflammatory, immunoregulatory, anti-infection, antioxidative, and proangiogenic. Some botanical compounds also exert actions on neurotransmission. This multitarget nature of botanical medicine may act through the amelioration of the neurotoxic brain environment in some patients resistant to neurotransmitter-based antidepressant drugs. A multitarget multidimensional approach may be a reasonable solution for patients resistant to neurotransmitter-based antidepressant drugs.
Collapse
|
9
|
Malinovskaya NA, Komleva YK, Salmin VV, Morgun AV, Shuvaev AN, Panina YA, Boitsova EB, Salmina AB. Endothelial Progenitor Cells Physiology and Metabolic Plasticity in Brain Angiogenesis and Blood-Brain Barrier Modeling. Front Physiol 2016; 7:599. [PMID: 27990124 PMCID: PMC5130982 DOI: 10.3389/fphys.2016.00599] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/16/2016] [Indexed: 12/31/2022] Open
Abstract
Currently, there is a considerable interest to the assessment of blood-brain barrier (BBB) development as a part of cerebral angiogenesis developmental program. Embryonic and adult angiogenesis in the brain is governed by the coordinated activity of endothelial progenitor cells, brain microvascular endothelial cells, and non-endothelial cells contributing to the establishment of the BBB (pericytes, astrocytes, neurons). Metabolic and functional plasticity of endothelial progenitor cells controls their timely recruitment, precise homing to the brain microvessels, and efficient support of brain angiogenesis. Deciphering endothelial progenitor cells physiology would provide novel engineering approaches to establish adequate microfluidically-supported BBB models and brain microphysiological systems for translational studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alla B. Salmina
- Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| |
Collapse
|