1
|
Labens R, Raidal S, Borgen-Nielsen C, Pyecroft S, Pant SD, De Ridder T. Wound healing of experimental equine skin wounds and concurrent microbiota in wound dressings following topical propylene glycol gel treatment. Front Vet Sci 2023; 10:1294021. [PMID: 38155761 PMCID: PMC10752953 DOI: 10.3389/fvets.2023.1294021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/23/2023] [Indexed: 12/30/2023] Open
Abstract
Introduction Topical wound treatments rely on carrier formulations with little to no biological impact. The potential for a common vehicle, a propylene glycol (PG) gel, to affect wound healing measures including microbiota is not known. Microbiome characterization, based on next generation sequencing methods is typically performed on tissue or directly obtained wound fluid samples. The utility for primary wound dressings to characterize equine wound microbiota in the context of topical treatments is currently unknown. This investigation reports the topical effect of an 80% PG based gel on wound healing and microbiota in wound dressings. Methods Experiments were performed in six mature horses utilizing a surgical, distal limb wound model, histology of sequential wound biopsies, photographic wound measurements and microbiota profiling via 16s rRNA sequencing of wound dressing samples. Experimental wounds were surveyed for 42 days and either treated (Day 7, 14, 21 and 28; at 0.03 ml/cm2) or unexposed to the PG gel. Wound surface area, relative and absolute microbial abundances, diversity indices and histologic parameters were analyzed in the context of the experimental group (treatment; control) using qualitative or quantitative methods depending on data characteristics. Results Compared to controls, treatment slowed the wound healing rate (17.17 ± 4.27 vs. 18.56 ± 6.3 mm2/day), delayed the temporal decline of polymorphonucleated cells in wound beds and operational taxonomic units (OTU) in wound dressings and lowered alpha-diversity indices for microbiota in primary wound dressing. Relative abundances of OTUs were in line with those previously reported for equine wounds. Clinical outcomes 42 days post wounding were considered similar irrespective of PG gel exposure. Discussion Results highlight the potential for vehicle exposure to alter relevant wound outcome measures, imposing the need for stringent experimental control measures. Primary wound dressings may represent an alternate sample source for characterization of the wound microbiome alleviating the need for additional interventions. Further studies are warranted to contrast the microbiome in wound dressings against that present on wound surfaces to conclude on the validity of this approach.
Collapse
Affiliation(s)
- Raphael Labens
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science, Charles Sturt University, Wagga Wagga, NSW, Australia
- QBiotics Group Ltd., Yungaburra, QLD, Australia
| | - Sharanne Raidal
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Cathrine Borgen-Nielsen
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Stephen Pyecroft
- School of Animal and Veterinary Sciences, Faculty of Sciences, Engineering and Technology, University of Adelaide, Roseworthy, SA, Australia
| | - Sameer D. Pant
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science, Charles Sturt University, Wagga Wagga, NSW, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, Australia
| | | |
Collapse
|
2
|
Kunimitsu M, Nakagami G, Kitamura A, Minematsu T, Koudounas S, Ogai K, Sugama J, Takada C, Yeo S, Sanada H. Relationship between healing status and microbial dissimilarity in wound and peri-wound skin in pressure injuries. J Tissue Viability 2023; 32:144-150. [PMID: 36344337 DOI: 10.1016/j.jtv.2022.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 10/02/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
AIM Wound infection is the most serious cause of delayed healing for patients with pressure injuries. The wound microbiota, which plays a crucial role in delayed healing, forms by bacterial dissemination from the peri-wound skin. To manage the bioburden, wound and peri-wound skin care has been implemented; however, how the microbiota at these sites contribute to delayed healing is unclear. Therefore, we investigated the relationship between healing status and microbial dissimilarity in wound and peri-wound skin. METHODS A prospective cohort study was conducted at a long-term care hospital. The outcome was healing status assessed using the DESIGN-R® tool, a wound assessment tool to monitor the wound healing process. Bacterial DNA was extracted from the wound and peri-wound swabs, and microbiota composition was analyzed using 16S rRNA gene analysis. To evaluate microbial similarity, the weighted UniFrac dissimilarity index between wound and peri-wound microbiota was calculated. RESULTS Twenty-two pressure injuries (7 deep and 15 superficial wounds) were included in the study. For deep wounds, the predominant bacteria in wound and peri-wound skin were the same in the healing wounds, whereas they were different in all cases of hard-to-heal wounds. Analysis based on the weighted UniFrac dissimilarity index, there was no significant difference for healing wounds (p = 0.639), while a significant difference was found for hard-to-heal wounds (p = 0.047). CONCLUSIONS Delayed healing is possibly associated with formation of wound microbiota that is different in composition from that of the skin commensal microbiota. This study provides a new perspective for assessing wound bioburden.
Collapse
Affiliation(s)
- Mao Kunimitsu
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Japan Society for the Promotion of Science, Tokyo, Japan
| | - Gojiro Nakagami
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Aya Kitamura
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeo Minematsu
- Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Skincare Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sofoklis Koudounas
- Department of Skincare Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuhiro Ogai
- AI Hospital/Macro Signal Dynamics Research and Development Center, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan
| | - Junko Sugama
- Research Center for Implementation Nursing Science Initiative, School of Health Sciences, Fujita Health University, Aichi, Japan
| | - Chika Takada
- Department of Nursing, Sengi Hospital, Ishikawa, Japan
| | - SeonAe Yeo
- School of Nursing, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hiromi Sanada
- Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Global Nursing Research Center, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
3
|
Rippon MG, Rogers AA, Ousey K, Atkin L, Williams K. The importance of periwound skin in wound healing: an overview of the evidence. J Wound Care 2022; 31:648-659. [PMID: 36001708 DOI: 10.12968/jowc.2022.31.8.648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
DECLARATION OF INTEREST The authors have no conflicts of interest.
Collapse
Affiliation(s)
| | | | - Karen Ousey
- Institute of Skin Integrity and Infection Prevention, Department of Nursing and Midwifery, University of Huddersfield.,Adjunct Professor, School of Nursing, Faculty of Health at the Queensland University of Technology, Australia.,Visiting Professor, RCSI, Dublin, Ireland
| | | | - Kate Williams
- Department of Nursing and Midwifery, School of Human and Health Sciences, University of Huddersfield, Huddersfield, UK
| |
Collapse
|