1
|
El-Bassyouni HT, El-Kamah GY, Afifi HH, Taher MB, Soliman DR, Hamed K, Mehrez MI, Amr KS. Insight into Apert Syndrome: Reporting on Six Patients and Increasing Awareness. Mol Neurobiol 2025:10.1007/s12035-025-04902-9. [PMID: 40261605 DOI: 10.1007/s12035-025-04902-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 03/28/2025] [Indexed: 04/24/2025]
Abstract
Apert syndrome (AS) is a rare autosomal dominant disorder characterized by various congenital malformations. In this study, we aimed to explore the clinical presentation of Apert syndrome to enhance awareness among multidisciplinary healthcare providers regarding its differential diagnosis through the phenotype/genotype characterization of six Egyptian patients with AS. We examined six patients with Apert syndrome: four females and two males (2:1), aged 3 to 7 years. Clinical examination, along with pedigree analysis, was followed by DNA extraction from the patients' and their parents' peripheral blood leukocytes for genomic screening of FGFR2 gene variations. Key findings in all patients included craniosynostosis and distinctive facial features such as midface hypoplasia, exophthalmos, hypertelorism, a beaked nose, a prominent forehead, and an underdeveloped upper jaw, along with syndactyly of the hands and feet. We identified oral anomalies such as cleft palate, bifid uvula, impacted teeth, delayed eruption, supernumerary teeth, and thick gingiva. Pathogenic variants of the FGFR2 gene were characterized in all six patients. This report presents the largest cohort of Apert syndrome among Egyptian patients. Raising awareness about AS, especially among various interdisciplinary teams, is essential for managing this rare condition and is crucial for accurate diagnosis and timely medical and surgical intervention. Proper diagnosis and genetic counseling are necessary for improving survival and preventing the recurrence of complications.
Collapse
Affiliation(s)
| | - Ghada Y El-Kamah
- Department of Clinical Genetics, National Research Centre, Cairo, Egypt
| | - Hanan H Afifi
- Department of Clinical Genetics, National Research Centre, Cairo, Egypt
| | - Mohamed B Taher
- Department of Clinical Genetics, National Research Centre, Cairo, Egypt
| | - Doaa R Soliman
- Department of Pediatrics, Faculty of Medicine, Benha University, Benha, Egypt
| | - Khaled Hamed
- Department of Clinical Genetics, National Research Centre, Cairo, Egypt
| | - Mennat I Mehrez
- Department of Oro-Dental Genetics, National Research Centre, Cairo, Egypt
| | - Khalda Sayed Amr
- Department of Molecular Genetics, National Research Centre, Cairo, Egypt
| |
Collapse
|
2
|
Im H, Song Y, Kim JK, Park DK, Kim DS, Kim H, Shin JO. Molecular Regulation of Palatogenesis and Clefting: An Integrative Analysis of Genetic, Epigenetic Networks, and Environmental Interactions. Int J Mol Sci 2025; 26:1382. [PMID: 39941150 PMCID: PMC11818578 DOI: 10.3390/ijms26031382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
Palatogenesis is a complex developmental process requiring temporospatially coordinated cellular and molecular events. The following review focuses on genetic, epigenetic, and environmental aspects directing palatal formation and their implication in orofacial clefting genesis. Essential for palatal shelf development and elevation (TGF-β, BMP, FGF, and WNT), the subsequent processes of fusion (SHH) and proliferation, migration, differentiation, and apoptosis of neural crest-derived cells are controlled through signaling pathways. Interruptions to these processes may result in the birth defect cleft lip and/or palate (CL/P), which happens in approximately 1 in every 700 live births worldwide. Recent progress has emphasized epigenetic regulations via the class of non-coding RNAs with microRNAs based on critically important biological processes, such as proliferation, apoptosis, and epithelial-mesenchymal transition. These environmental risks (maternal smoking, alcohol, retinoic acid, and folate deficiency) interact with genetic and epigenetic factors during palatogenesis, while teratogens like dexamethasone and TCDD inhibit palatal fusion. In orofacial cleft, genetic, epigenetic, and environmental impact on the complex epidemiology. This is an extensive review, offering current perspectives on gene-environment interactions, as well as non-coding RNAs, in palatogenesis and emphasizing open questions regarding these interactions in palatal development.
Collapse
Affiliation(s)
- Hyuna Im
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 33151, Republic of Korea (D.-K.P.); (D.-S.K.)
| | - Yujeong Song
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 33151, Republic of Korea (D.-K.P.); (D.-S.K.)
| | - Jae Kyeom Kim
- Department of Food and Biotechnology, Korea University, Sejong 339770, Republic of Korea
- Department of Health Behavior and Nutrition Sciences, University of Delaware, Newark, DE 19711, USA
| | - Dae-Kyoon Park
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 33151, Republic of Korea (D.-K.P.); (D.-S.K.)
| | - Duk-Soo Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 33151, Republic of Korea (D.-K.P.); (D.-S.K.)
| | - Hankyu Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 33151, Republic of Korea (D.-K.P.); (D.-S.K.)
| | - Jeong-Oh Shin
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 33151, Republic of Korea (D.-K.P.); (D.-S.K.)
| |
Collapse
|
3
|
Kumari K, Saleh I, Taslim S, Ahmad S, Hussain I, Munir Z, Javed T, Virk MFI, Javed S, Bisharat P, Ur Rehman U. Unraveling the Complexity of Apert Syndrome: Genetics, Clinical Insights, and Future Frontiers. Cureus 2023; 15:e47281. [PMID: 38021759 PMCID: PMC10656109 DOI: 10.7759/cureus.47281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Apert syndrome (AS), also known as type I acrocephalosyndactyly, is a rare congenital condition characterized by craniosynostosis resulting from missense mutations in the fibroblast growth factor receptor 2 (FGFR2) gene. This comprehensive review delves into AS, covering its clinical manifestations, genetics, diagnosis, medical management, psychosocial considerations, and future research directions. AS presents with distinct features, including a brachycephalic skull, midface hypoplasia, and limb anomalies such as syndactyly. It follows an autosomal dominant inheritance pattern with mutations in the FGFR2 gene. Prenatal diagnosis is possible through advanced imaging techniques and molecular testing. The multidisciplinary approach to AS management involves surgical interventions, orthodontics, and psychological support. Although no curative treatment exists, early interventions can significantly improve function and aesthetics. The quality of life for AS patients is influenced by psychosocial factors, necessitating comprehensive support for both patients and their families. Future research directions include gene therapy, understanding cellular responses to FGFR2 mutations, and addressing genetic heterogeneity. Collaborative efforts are vital to advancing knowledge about AS and its genetic underpinnings. Overall, this review serves as a valuable resource for healthcare professionals, educators, and researchers, contributing to a deeper understanding of AS and facilitating advancements in diagnosis and treatment.
Collapse
Affiliation(s)
- Kajol Kumari
- Dentistry, Jinnah Sindh Medical University, Karachi, PAK
| | - Inam Saleh
- Paediatrics, University of Kentucky College of Medicine, Lexington, USA
| | - Sanzida Taslim
- Psychiatry, Ross University School of Medicine, Bridgetown, BRB
| | - Sana Ahmad
- Psychiatry, TIME Organization, Inc., Baltimore, USA
| | - Iqbal Hussain
- Internal Medicine, Khyber Medical University, Peshawar, PAK
- Internal Medicine, Lady Reading Hospital, Peshawar, PAK
| | - Zainab Munir
- Emergency Department, Imran Idrees Teaching Hospital, Sialkot, PAK
| | - Tamleel Javed
- Emergency Department, Imran Idrees Teaching Hospital, Sialkot, PAK
| | | | - Saleha Javed
- Emergency Department, Sheikh Zayed Hospital, Rahim Yar Khan, PAK
| | | | | |
Collapse
|
4
|
Zaki HA, Alassaf MS, Babkair HA, Abdel-Latif GA, Jaffar AK, Alolayan AB, Elsayed SAH. Multidisciplinary Rehabilitation Approach to the Maxillo-Facial Complications of Crouson’s Disease: Case Report and Review. Open Dent J 2022. [DOI: 10.2174/18742106-v16-e2206300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
Craniofacial anomalies present a challenge to all health care practitioners since they necessitate long-term team follow-up, which is difficult to achieve outside of a major center where craniofacial anomalies teams normally collaborate.
Objectives:
The current review with an illustrative case focuses on the representation and review of Crouzon syndrome and its maxillofacial implications. Review of different varieties of gene mutations that produce craniosynostosis syndromes were discussed and focused on seven clinically distinct craniosynostosis syndromes that are precipitated by the mutation in one or more of the fibroblast growth factor receptors genes which affected the maxillofacial region.
Case presentation:
A complete clinical and radiographic case scenario of a patient suffering from Crouzon syndrome was presented, and discussion of the various disciplines and techniques used along the way to achieve the best results, as well as how team collaboration and patient compliance led to the best results were represented. The presented case was treated with orthodontic treatment, Le Fort-I osteotomy, and Le Fort-III osteotomy with extraoral distraction osteogenesis.
Conclusion:
The combination of different orthognathic surgery alternatives (Le Fort-III and Le Fort-I) with distraction osteogenesis and orthodontic treatment produced excellent outcomes with few complications, and the patient was extremely satisfied and cooperative. Early and thorough team-based care for Crouzon syndrome patients should be accessible at specialized craniofacial centers.
Collapse
|
5
|
Integrated Systems Analysis Explores Dysfunctional Molecular Modules and Regulatory Factors in Children with Autism Spectrum Disorder. J Mol Neurosci 2020; 71:358-368. [PMID: 32653993 DOI: 10.1007/s12031-020-01658-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 07/03/2020] [Indexed: 12/22/2022]
Abstract
Autism spectrum disorder (ASD) is a genetic neurodevelopmental disorder involving multiple genes that occurs in early childhood, and a number of risk genes have been reported in previous studies. However, the molecular mechanism of the polygenic regulation leading to pathological changes in ASD remains unclear. First, we identified 8 dysregulated gene coexpression modules by analyzing blood transcriptome data from 96 children with ASD and 42 controls. These modules are rich in ASD risk genes and function related to metabolism, immunity, neurodevelopment, and signaling. The regulatory factors of each module including microRNA (miRNA) and transcription factors (TFs) were subsequently predicted based on transcriptional and posttranscriptional regulation. We identified a set of miRNAs that regulate metabolic and immune modules, as well as transcription factors that cause dysregulation of the modules, and we constructed a coregulatory network between the regulatory factors and modules. Our work reveals dysfunctional modules in children with ASD, elucidates the role of miRNA and transcription factor dysregulation in the pathophysiology of ASD, and helps us to further understand the underlying molecular mechanism of ASD.
Collapse
|
6
|
Ibarra-Arce A, Almaraz-Salinas M, Martínez-Rosas V, Ortiz de Zárate-Alarcón G, Flores-Peña L, Romero-Valdovinos M, Olivo-Díaz A. Clinical study and some molecular features of Mexican patients with syndromic craniosynostosis. Mol Genet Genomic Med 2020; 8:e1266. [PMID: 32510873 PMCID: PMC7434736 DOI: 10.1002/mgg3.1266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 11/21/2019] [Accepted: 03/24/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Craniosynostosis is one of the major genetic disorders affecting 1 in 2,100-2,500 live newborn children. Environmental and genetic factors are involved in the manifestation of this disease. The suggested genetic causes of craniosynostosis are pathogenic variants in FGFR1, FGFR2, FGFR3, and TWIST1 genes. METHODS In order to describe their major clinical characteristics and the presence of pathogenic variants, a sample of 36 Mexican patients with craniosynostosis diagnosed as: Crouzon (OMIM 123,500), Pfeiffer (OMIM 101,600), Apert (OMIM 101,200), Saethre-Chotzen (OMIM 101,400), and Muenke (OMIM 602,849) was analyzed. RESULTS In addition to craniosynostosis, most of the patients presented hypertelorism, midface hypoplasia, and abnormalities in hands and feet. To detect the pathogenic variants p.Pro252Arg FGFR1 (OMIM 136,350), p.Ser252Trp, p.Pro253Arg FGFR2 (OMIM 176,943), p.Pro250Arg, FGFR3 (OMIM 134,934), and p.Gln119Pro TWIST1 (OMIM 601,622), PCR amplification and restriction enzyme digestion were performed. Four and two patients with Apert presented the pathogenic variants p.Ser252Trp and p.Pro253Arg in FGFR2, respectively (with a frequency of 11.1% and 5.5%). The p.Pro250Arg pathogenic variant of FGFR3 was found in a patient with Muenke (with a frequency of 2.8%). The above percentages were calculated with the total number of patients. CONCLUSION The contribution of this work is discreet, since only 4 genes were analyzed and sample size is small. However, this strategy could be improved by sequencing the FGFR1, FGFR2, FGFR3, and TWIST1 genes, to determine different pathogenic variants. On the other hand, it would be important to include other genes, such as TCF12 (OMIM 600,480), MSX2 (OMIM 123,101), RAB23 (OMIM 606,144), and EFNB1 (OMIM 300,035), to determine their participation in craniosynostosis in the Mexican population.
Collapse
Affiliation(s)
- Aurora Ibarra-Arce
- Departamento de Biología Molecular e Histocompatibilidad, Hospital General "Dr. Manuel Gea González", Ciudad de México, México
| | - Manuel Almaraz-Salinas
- División de Genética, Hospital General "Dr. Manuel Gea González", Ciudad de México, México
| | - Víctor Martínez-Rosas
- División de Genética, Hospital General "Dr. Manuel Gea González", Ciudad de México, México
| | | | - Laura Flores-Peña
- División de Genética, Hospital General "Dr. Manuel Gea González", Ciudad de México, México
| | - Mirza Romero-Valdovinos
- Departamento de Biología Molecular e Histocompatibilidad, Hospital General "Dr. Manuel Gea González", Ciudad de México, México
| | - Angélica Olivo-Díaz
- Departamento de Biología Molecular e Histocompatibilidad, Hospital General "Dr. Manuel Gea González", Ciudad de México, México
| |
Collapse
|
7
|
Craniofacial malformations and their association with brain development: the importance of a multidisciplinary approach for treatment. Odontology 2019; 108:1-15. [PMID: 31172336 DOI: 10.1007/s10266-019-00433-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/22/2019] [Indexed: 02/08/2023]
Abstract
The craniofacial complex develops mainly in the first trimester of pregnancy, but its final shaping and the development of the teeth extend into the second and third trimesters. It is intimately connected with the development of the brain because of the crucial role the cranial neural crest cells play and the fact that many signals which control craniofacial development originate in the brain and vice versa. As a result, malformations of one organ may affect the development of the other. Similarly, there are developmental connections between the craniofacial complex and the teeth. Craniofacial anomalies are either isolated, resulting from abnormal development of the first two embryonic pharyngeal arches, or part of multiple malformation syndromes affecting many other organs. They may stem from gene mutations, chromosomal aberrations or from environmental causes induced by teratogens. The craniofacial morphologic changes are generally cosmetic, but they often interfere with important functions such as chewing, swallowing and respiration. In addition, they may cause hearing or visual impairment. In this review we discussed only a small number of craniofacial malformations and barely touched upon related anomalies of dentition. Following a brief description of the craniofacial development, we discussed oral clefts, craniofacial microsomia, teratogens that may interfere with craniofacial development resulting in different malformations, the genetically determined craniosynostoses syndromes and few other relatively common syndromes that, in addition to the craniofacial complex, also affect other organs. The understanding of these malformations is important in dentistry as dentists play an integral role in their diagnosis and multidisciplinary treatment.
Collapse
|
8
|
Li Y, Ma D, Sun Y, Meng L, Wang Y, Jiang T. Apert Syndrome With FGFR2 758 C > G Mutation: A Chinese Case Report. Front Genet 2018; 9:181. [PMID: 29868125 PMCID: PMC5966571 DOI: 10.3389/fgene.2018.00181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/01/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Apert syndrome is considered as one of the most common craniosynostosis syndromes with a prevalence of 1 in 65,000 individuals, and has a close relationship with point mutations in FGFR2 gene. Case report: Here, we described a Apert syndrome case, who was referred to genetic consultation in our hospital with the symptom of craniosynostosis and syndactyly of the hands and feet. Craniosynostosis, midfacial retrusion, steep wide forehead, larger head circumference, marked depression of the nasal bridge, short and wide nose and proptosis could be found obviously, apart from these, ears were mildly low compared with normal children and there was no cleft lip and palate. Mutation was identified by sanger sequencing and a mutation in the exon 7 of FGFR2 gene was detected: p.Pro253Arg (P253R) 758 C > G, which was not found in his parents. Conclusion: The baby had Apert syndrome caused by 758 C > G mutation in the exon 7 of FGFR2 gene, considering no this mutation in his parents, it was spontaneous.
Collapse
Affiliation(s)
- Yahong Li
- Center of Prenatal Diagnosis, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Dingyuan Ma
- Center of Prenatal Diagnosis, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yun Sun
- Center of Prenatal Diagnosis, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Lulu Meng
- Center of Prenatal Diagnosis, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yanyun Wang
- Center of Prenatal Diagnosis, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Tao Jiang
- Center of Prenatal Diagnosis, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| |
Collapse
|
9
|
Işık E, Atik T, Onay H, Özkınay F. Two patients with Apert syndrome with different mutations: the importance of early diagnosis. Turk Arch Pediatr 2017; 52:231-235. [PMID: 29483804 DOI: 10.5152/turkpediatriars.2016.3305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 05/10/2016] [Indexed: 11/22/2022]
Abstract
Apert syndrome is an autosomal dominant craniosynostosis syndrome accompanied by limb anomalies. The fibroblast growth factor receptor 2 (FGFR2) gene is responsible for the disease and two different heterozygous mutations, p.Pro253Arg and p.Ser252Trp, have been defined as responsible in the majority of cases of Apert syndrome. In this case report, two patients with Apert syndrome with two different FGFR2 gene mutations are presented. Case-1, a 4-month-old boy with craniosynostosis and syndactyly was referred to pediatric genetic clinic. The molecular analysis revealed p.Pro253Arg mutation in the FGFR2 gene, which confirmed the diagnosis of Apert syndrome. Case-2, a 16-year-old girl with developmental delay, cleft palate, syndactyly, and craniosynostosis, was also diagnosed as having Apert syndrome. A molecular diagnosis identified a p.Ser252Trp heterozygous mutation in the FGFR2 gene. Case-1 underwent surgery for craniosynostosis at age 10 months and he was developmentally normal during the 2 year follow-up period. As a conclusion, early surgical intervention should be considered in cases of Apert syndrome to prevent intellectual disability.
Collapse
Affiliation(s)
- Esra Işık
- Ege University, Faculty of Medicine, Department of Pediatrics, Izmir, Turkey
| | - Tahir Atik
- Ege University, Faculty of Medicine, Department of Pediatrics, Izmir, Turkey
| | - Hüseyin Onay
- Ege University, Faculty of Medicine, Department Medical Genetics, Izmir, Turkey
| | - Ferda Özkınay
- Ege University, Faculty of Medicine, Department of Pediatrics, Izmir, Turkey
| |
Collapse
|
10
|
López-Estudillo AS, Rosales-Bérber MA, Ruiz-Rodríguez S, Pozos-Guillén A, Noyola-Frías MÁ, Garrocho-Rangel A. Dental approach for Apert syndrome in children: a systematic review. Med Oral Patol Oral Cir Bucal 2017; 22:e660-e668. [PMID: 29053644 PMCID: PMC5813983 DOI: 10.4317/medoral.21628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 05/06/2016] [Indexed: 12/13/2022] Open
Abstract
Background Apert Syndrome (AS), or type I acrocephalosyndactyly, is a rare, congenital craniosynostosis condition resulting from missense mutations in the gene encoding fibroblast growth factor receptor 2. It is characterized by three specific clinical features: brachycephalic skull; midface hypoplasia, and limb abnormalities (syndactyly of hands and feet). The disorder exhibits variable presentations in bones, brain, skin, internal organs, and in the oral/maxillofacial region. The aim of the present paper was to show the main results from a systematic review of AS. Material and Methods A search of the literature was performed from April to June 2016 in five electronic databases. Clinical interventional or observational studies, reviews, and case reports were included. The present systematic review was carried out strictly following PRISMA and Cochrane Collaboration criteria. Results A total of 129 potential references were identified. After reviewing titles and abstracts, 77 of these did not meet the desired criteria and were discarded. The full text of the remaining 52 manuscripts was critically screened. Finally, 35 relevant papers were identified for inclusion in the present systematic review and classified according to topic type. Conclusions According to the information gathered, dentistry practitioners must be able to supply an early diagnosis through the recognition of AS clinical features and provide correct oral management. Additionally, they should be integrated in a multidisciplinary medical care team in order to improve the quality of life of the affected patients. Key words:Apert syndrome, acrocephalosyndactyly, craniosynostosis, skeletal dysplasias, systematic review.
Collapse
Affiliation(s)
- A-S López-Estudillo
- Facultad de Estomatología, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava #2, Zona Universitaria, C.P. 78290; San Luis Potosí, S.L.P. México,
| | | | | | | | | | | |
Collapse
|
11
|
Das S, Munshi A. Research advances in Apert syndrome. J Oral Biol Craniofac Res 2017; 8:194-199. [PMID: 30191107 DOI: 10.1016/j.jobcr.2017.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/19/2017] [Indexed: 02/07/2023] Open
Abstract
Apert syndrome is one of the several genetic syndromes associated with craniosynostosis, a condition that includes premature fusion of one or multiple cranial sutures. There has been significant clinical variation among different sutural synostoses and also within particular suture synostosis. Enormous progress has been made in identifying various mutations associated with Apert Syndrome. Although a causal gene has been defined, the precise role of this mutation in producing craniofacial dysmorphology and other related abnormalities is in the process of discovery. Most of the understanding regarding this rare disorder has been possible due to mouse models that have helped in deciphering the elements of this rare human disease. Thus, molecular and cellular understanding of the disease has taken a leap and further with the advent of technology definitive diagnosis of the syndrome is no more of an issue. In this review, we have discussed and consolidated the possible molecular studies that have contributed in understanding of this rare syndrome. This article may help clinicians and researchers to inform about the latest progress in Apert syndrome.
Collapse
Affiliation(s)
- Satrupa Das
- Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Begumpet, Hyderabad, India.,Dr. NTR University of Health Sciences, Vijayawada, Andhra Pradesh, India
| | - Anjana Munshi
- Centre for Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|