1
|
An Q, Lin R, Yang Q, Wang C, Wang D. Evaluation of genetic mutations associated with phenotypic resistance to fluoroquinolones, bedaquiline, and linezolid in clinical Mycobacterium tuberculosis: A systematic review and meta-analysis. J Glob Antimicrob Resist 2023; 34:214-226. [PMID: 37172764 DOI: 10.1016/j.jgar.2023.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/26/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
OBJECTIVES The aim of the study was to update the classification of drugs used in multidrug-resistant tuberculosis (MDR-TB) regimens. Group A drugs (fluoroquinolones, bedaquiline (BDQ), and linezolid (LZD)) are crucial drugs for the control of MDR-TB. Molecular drug resistance assays could facilitate the effective use of Group A drugs. METHODS We summarised the evidence implicating specific genetic mutations in resistance to Group A drugs. We searched PubMed, Embase, MEDLINE, and the Cochrane Library for studies published from the inception of each database until July 1, 2022. Using a random-effects model, we calculated the odds ratios and 95% confidence intervals as our measures of association. RESULTS A total of 5001 clinical isolates were included in 47 studies. Mutations in gyrA A90V, D94G, D94N, and D94Y were significantly associated with an increased risk of a levofloxacin (LFX)-resistant phenotype. In addition, mutations in gyrA G88C, A90V, D94G, D94H, D94N, and D94Y were significantly associated with an increased risk of a moxifloxacin (MFX)-resistant phenotype. In only one study, the majority of gene loci (n = 126, 90.65%) in BDQ-resistant isolates were observed to have unique mutations in atpE, Rv0678, mmpL5, pepQ, and Rv1979c. The most common mutations occurred at four sites in the rrl gene (g2061t, g2270c, g2270t, and g2814t) and at one site in rplC (C154R) in LZD-resistant isolates. Our meta-analysis demonstrated that there were no mutations associated with BDQ- or LZD-resistant phenotypes. CONCLUSION The mutations detected by rapid molecular assay were correlated with phenotypic resistance to LFX and MFX. The absence of mutation-phenotype associations for BDQ and LZD hindered the development of a rapid molecular assay.
Collapse
Affiliation(s)
- Qi An
- Scientific Research and Teaching Department, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Rui Lin
- Scientific Research and Teaching Department, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Qing Yang
- Scientific Research and Teaching Department, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China
| | - Chuan Wang
- Scientific Research and Teaching Department, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China.
| | - Dongmei Wang
- Scientific Research and Teaching Department, Public Health Clinical Center of Chengdu, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Pinhata JMW, Brandao AP, Gallo JF, Oliveira RSD, Ferrazoli L. GenoType MTBDRsl for detection of second-line drugs and ethambutol resistance in multidrug-resistant Mycobacterium tuberculosis isolates at a high-throughput laboratory. Diagn Microbiol Infect Dis 2023; 105:115856. [PMID: 36446302 DOI: 10.1016/j.diagmicrobio.2022.115856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/13/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
We assessed the performance of MTBDRsl for detection of resistance to fluoroquinolones, aminoglycosides/cyclic peptides, and ethambutol compared to BACTEC MGIT 960 by subjecting simultaneously to both tests 385 phenotypically multidrug-resistant-Mycobacterium tuberculosis isolates from Sao Paulo, Brazil. Discordances were resolved by Sanger sequencing. MTBDRsl correctly detected 99.7% of the multidrug-resistant isolates, 87.8% of the pre-XDR, and 73.9% of the XDR. The assay showed sensitivity of 86.4%, 100%, 85.2% and 76.4% for fluoroquinolones, amikacin/kanamycin, capreomycin and ethambutol, respectively. Specificity was 100% for fluoroquinolones and aminoglycosides/cyclic peptides, and 93.6% for ethambutol. Most fluoroquinolone-discordances were due to mutations in genome regions not targeted by the MTBDRsl v. 1.0: gyrA_H70R and gyrB_R446C, D461N, D449V, and N488D. Capreomycin-resistant isolates with wild-type rrs results on MTBDRsl presented tlyA mutations. MTBDRsl presented good performance for detecting resistance to second-line drugs and ethambutol in clinical isolates. In our setting, multidrug-resistant. isolates presented mutations not targeted by the molecular assay.
Collapse
Affiliation(s)
- Juliana Maira Watanabe Pinhata
- Núcleo de Tuberculose e Micobacterioses, Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), São Paulo, São Paulo, Brazil.
| | - Angela Pires Brandao
- Núcleo de Tuberculose e Micobacterioses, Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), São Paulo, São Paulo, Brazil; Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Failde Gallo
- Núcleo de Tuberculose e Micobacterioses, Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), São Paulo, São Paulo, Brazil
| | - Rosângela Siqueira de Oliveira
- Núcleo de Tuberculose e Micobacterioses, Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), São Paulo, São Paulo, Brazil
| | - Lucilaine Ferrazoli
- Núcleo de Tuberculose e Micobacterioses, Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Ou X, Zhang Z, Zhao B, Song Z, Wang S, He W, Pei S, Liu D, Xing R, Xia H, Zhao Y. Evaluation Study of xMAP TIER Assay on a Microsphere-Based Platform for Detecting First-Line Anti-Tuberculosis Drug Resistance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192417068. [PMID: 36554951 PMCID: PMC9779588 DOI: 10.3390/ijerph192417068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 05/09/2023]
Abstract
Early diagnosis of drug susceptibility for tuberculosis (TB) patients could guide the timely initiation of effective treatment. We evaluated a novel multiplex xMAP TIER (Tuberculosis-Isoniazid-Ethambutol-Rifampicin) assay based on the Luminex xMAP system to detect first-line anti-tuberculous drug resistance. Deoxyribonucleic acid samples from 353 Mycobacterium tuberculosis clinical isolates were amplified by multiplex polymerase chain reaction, followed by hybridization and analysis through the xMAP system. Compared with the broth microdilution method, the sensitivity and specificity of the xMAP TIER assay for detecting resistance was 94.9% (95%CI, 90.0-99.8%) and 98.9% (95%CI, 97.7-100.0%) for rifampicin; 89.1% (95%CI, 83.9-94.3%) and 100.0% (95%CI, 100.0-100.0%) for isoniazid; 82.1% (95% CI, 68.0-96.3%) and 99.7% (95% CI, 99.0-100.0%) for ethambutol. With DNA sequencing as the reference standard, the sensitivity and specificity of xMAP TIER for detecting resistance were 95.0% (95% CI, 90.2-99.8%) and 99.6% (95% CI, 98.9-100.0%) for rifampicin; 96.9% (95% CI, 93.8-99.9%) and 100.0% (95% CI, 100.0-100.0%) for isoniazid; 86.1% (95% CI, 74.8-97.4%) and 100.0% (95% CI, 100.0-100.0%) for ethambutol. The results achieved showed that the xMAP TIER assay had good performance for detecting first-line anti-tuberculosis drug resistance, and it has the potential to diagnose drug-resistant tuberculosis more accurately due to the addition of more optimal design primers and probes on open architecture xMAP system.
Collapse
Affiliation(s)
- Xichao Ou
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Zhiguo Zhang
- Tuberculosis Dispensary of Changping District, Beijing 102202, China
| | - Bing Zhao
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Zexuan Song
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Shengfen Wang
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Wencong He
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Shaojun Pei
- School of Public Health, Peking University, Beijing 100191, China
| | - Dongxin Liu
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Ruida Xing
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Hui Xia
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yanlin Zhao
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Correspondence:
| |
Collapse
|
4
|
Rapid diagnosis of XDR and pre-XDR TB: a systematic review of available tools. Arch Bronconeumol 2022; 58:809-820. [DOI: 10.1016/j.arbres.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 11/23/2022]
|
5
|
Characterization of Non-tuberculous Mycobacteria by Line Probe Assay Isolated from Pulmonary Tuberculosis Suspected Patients at Rajasthan. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.2.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Non-tuberculous Mycobacteria (NTM) are emerging as an important opportunistic pathogen. Since clinical presentation of NTM infection is similar to tuberculosis (TB), patients present as suspected TB or drug resistant TB. Presently in the National Tuberculosis Elimination Programme (NTEP ) NTM are not being speciated, but there is an urgent need to characterize the NTM so that appropriate treatment can be given as many species are multi-drug resistant. The purpose of the present study was to use Line Probe Assay (LPA) i.e. GenoType Mycobacterium CM/AS assay to characterize NTM for rapid early reporting and to know the pattern of NTM at Rajasthan. Sputum samples from 5000 TB and Multi Drug Resistant TB (MDRTB) suspect patients were processed and cultured on Mycobacterium Growth Indicator Tube (MGIT). Culture isolates found positive for mycobacteria in Ziehl Neelsen (ZN) staining and negative by MPT64 antigen test were then subjected for GenoType Mycobacterium CM/AS Among sputum samples from 5000 patients 1520 (30.4%) patient samples were positive for mycobacteria, among these 1488 (97.9%) were Mycobacterium tuberculosis (MTB) and 32 (2.1%) were NTM, among them 56.2% were Mycobacterium intracellulare, 21.8% Mycobacterium abscessus, 9.3% Mycobacterium fortuitum, 1% Mycobacterium simiae and 9.3% isolates showed invalid results. Incidence of NTM was very low (2.1%) among them M. intracellulare and M. abscessus were the most commonly isolated species, GenoType Mycobacterium CM/AS assay was found to be easy, rapid and reliable test giving valid results in 91% cases in 3-5 days of getting growth.
Collapse
|
6
|
Rahman SMM, Nasrin R, Rahman A, Ahmed S, Khatun R, Uddin MKM, Rahman MM, Banu S. Performance of GenoType MTBDRsl assay for detection of second-line drugs and ethambutol resistance directly from sputum specimens of MDR-TB patients in Bangladesh. PLoS One 2021; 16:e0261329. [PMID: 34914803 PMCID: PMC8675706 DOI: 10.1371/journal.pone.0261329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 11/29/2021] [Indexed: 11/19/2022] Open
Abstract
Background Rapid and early detection of drug susceptibility among multidrug-resistant tuberculosis (MDR-TB) patients could guide the timely initiation of effective treatment and reduce transmission of drug-resistant TB. In the current study, we evaluated the diagnostic performance of GenoType MTBDRsl (MTBDRsl) ver1.0 assay for detection of resistance to ofloxacin (OFL), kanamycin (KAN) and ethambutol (EMB), and additionally the XDR-TB among MDR-TB patients in Bangladesh. Methods The MTBDRsl assay was performed directly on 218 smear-positive sputum specimens collected from MDR-TB patients and the results were compared with the phenotypic drug susceptibility testing (DST) performed on solid Lowenstein-Jensen (L-J) media. We also analyzed the mutation patterns of gyrA, rrs, and embB genes for detection of resistance to OFL, KAN and EMB, respectively. Results The sensitivity and specificity of the MTBDRsl compared to phenotypic L-J DST were 81.8% (95% CI, 69.1–90.9) and 98.8% (95% CI, 95.6–99.8), respectively for OFL (PPV: 95.7% & NPV: 94.1%); 65.1% (95% CI, 57.5–72.2) and 86.7% (95% CI, 73.2–94.9), respectively for EMB (PPV: 94.9% & NPV: 39.4%); and 100% for KAN. The diagnostic accuracy of KAN, OFL and EMB were 100, 94.5 and 69.6%, respectively. Moreover, the sensitivity, specificity and diagnostic accuracy of MtBDRsl for detection of XDR-TB was 100%. The most frequently observed mutations were at codon D94G (46.8%) of gyrA gene, A1401G (83.3%) of rrs gene, and M306V (41.5%) of the embB gene. Conclusion Considering the excellent performance in this study we suggest that MTBDRsl assay can be used as an initial rapid test for detection of KAN and OFL susceptibility, as well as XDR-TB directly from smear-positive sputum specimens of MDR-TB patients in Bangladesh.
Collapse
Affiliation(s)
| | - Rumana Nasrin
- Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Arfatur Rahman
- Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Shahriar Ahmed
- Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Razia Khatun
- Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | | | - Md. Mojibur Rahman
- Department of Epidemiology, Bangladesh University of Health Sciences, Darus Salam, Mirpur, Dhaka, Bangladesh
| | - Sayera Banu
- Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
- * E-mail:
| |
Collapse
|
7
|
Singh K, Kumari R, Gupta S, Tripathi R, Srivastava A, Shakya V, Gupta A, Anupurba S. Direct detection of resistance to fluoroquinolones/SLIDs in sputum specimen by GenoType MTBDRsl v.2.0 assay A study from Eastern Uttar Pradesh, India. Ann Clin Microbiol Antimicrob 2021; 20:56. [PMID: 34446022 PMCID: PMC8394194 DOI: 10.1186/s12941-021-00463-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/16/2021] [Indexed: 11/30/2022] Open
Abstract
Background According to World Health Organization (WHO), drug-resistant tuberculosis (DR-TB) is a major contributor to antimicrobial resistance globally and continues to be a public health threat. Annually, about half a million people fall ill with DR-TB globally. The gradual increase in resistance to fluoroquinolones (FQs) and second-line injectable drugs (SLIDs), poses a serious threat to effective TB control and adequate patient management. Therefore, WHO suggests the use of GenoType MTBDRsl v.2.0 assay for detection of multiple mutations associated with FQs and SLIDs. Hence, the study was conducted to determine the prevalence of resistance to FQs and SLIDs by comparing direct GenoType MTBDRsl v.2.0 assay with phenotypic drug susceptibility testing (DST). Methods The study was conducted on 1320 smear positive sputum samples from a total of 2536 RR-TB, confirmed by GeneXpert MTB/RIF. The smear positive specimens were decontaminated, and DNA extraction was performed. Furthermore, the extracted DNA was used for GenoType MTBDRsl v.2.0 assay. While 20% of the decontaminated specimens were inoculated in Mycobacterium growth indicator tube (MGIT) for drug susceptibility testing (DST). Results Out of 1320 smear positive sputum samples, 1178 were identified as Mycobacterium tuberculosis complex (MTBC) and remaining were negative by GenoType MTBDRsl v.2.0 assay. Of the 1178 MTBC positive, 26.6% were sensitive to both FQs and SLIDs, whereas 57.3% were only FQs resistant and 15.9% were resistant to both FQs and SLIDs. Further DST of 225 isolates by liquid culture showed that 17% were sensitive to both FQs and SLIDs, 61.3% were only FQs resistant and 21.3% were resistant to both. The specificity for FQs and SLIDs was 92.31% and 100% whereas sensitivity was 100% respectively by GenoType MTBDRsl v.2.0 assay in direct sputum samples. Conclusions Our study clearly suggests that GenoType MTBDRsl v.2.0 assay is a reliable test for the rapid detection of resistance to second-line drugs after confirmation by GeneXpert MTB/RIF assay for RR-TB. Though, high rate FQ (ofloxacin) resistance was seen in our setting, moxifloxacin could be used as treatment option owing to very low resistance. Supplementary Information The online version contains supplementary material available at 10.1186/s12941-021-00463-6.
Collapse
Affiliation(s)
- Kamal Singh
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Richa Kumari
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Smita Gupta
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Rajneesh Tripathi
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Anjali Srivastava
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Vidisha Shakya
- Department of Botany (Applied Microbiology), Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ankush Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Shampa Anupurba
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
8
|
Al-Mutairi NM, Ahmad S, Mokaddas E. Increasing prevalence of resistance to second-line drugs among multidrug-resistant Mycobacterium tuberculosis isolates in Kuwait. Sci Rep 2021; 11:7765. [PMID: 33833390 PMCID: PMC8032671 DOI: 10.1038/s41598-021-87516-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
Molecular methods detect genetic mutations associated with drug resistance. This study detected resistance-conferring mutations in gyrA/gyrB for fluoroquinolones and rrs/eis genes for second-line injectable drugs (SLIDs) among multidrug-resistant Mycobacterium tuberculosis (MDR-TB) isolates in Kuwait. Fifty pansusceptible M. tuberculosis and 102 MDR-TB strains were tested. Phenotypic susceptibility testing was performed by MGIT 960 system using SIRE drug kit. GenoType MTBDRsl version 1 (gMTBDRslv1) and GenoType MTBDRsl version 2 (gMTBDRslv2) tests were used for mutation detection. Results were validated by PCR-sequencing of respective genes. Fingerprinting was performed by spoligotyping. No mutations were detected in pansusceptible isolates. gMTBDRslv1 detected gyrA mutations in 12 and rrs mutations in 8 MDR-TB isolates. gMTBDRsl2 additionally detected gyrB mutations in 2 and eis mutation in 1 isolate. Mutations in both gyrA/gyrB and rrs/eis were not detected. gMTBDRslv1 also detected ethambutol resistance-conferring embB mutations in 59 isolates. Although XDR-TB was not detected, frequency of resistance-conferring mutations for fluoroquinolones or SLIDs was significantly higher among isolates collected during 2013–2019 versus 2006–2012. Application of both tests is warranted for proper management of MDR-TB patients in Kuwait as gMTBDRslv2 detected resistance to fluoroquinolones and/or SLIDs in 3 additional isolates while gMTBDRslv1 additionally detected resistance to ethambutol in 58% of MDR-TB isolates.
Collapse
Affiliation(s)
- Noura M Al-Mutairi
- Department of Microbiology, Faculty of Medicine, Health Sciences Centre, Kuwait University, P. O. Box 24923, 13110, Safat, Kuwait
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Health Sciences Centre, Kuwait University, P. O. Box 24923, 13110, Safat, Kuwait.
| | - Eiman Mokaddas
- Department of Microbiology, Faculty of Medicine, Health Sciences Centre, Kuwait University, P. O. Box 24923, 13110, Safat, Kuwait.,Kuwait National TB Control Laboratory, Shuwaikh, Kuwait
| |
Collapse
|
9
|
Li G, Guo Q, Liu H, Wan L, Jiang Y, Li M, Zhao LL, Zhao X, Liu Z, Wan K. Detection of Resistance to Fluoroquinolones and Second-Line Injectable Drugs Among Mycobacterium tuberculosis by a Reverse Dot Blot Hybridization Assay. Infect Drug Resist 2020; 13:4091-4104. [PMID: 33204126 PMCID: PMC7666996 DOI: 10.2147/idr.s270209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/07/2020] [Indexed: 01/23/2023] Open
Abstract
Background Reliable and timely determination of second-line drug resistance is essential for early initiation effective anti-tubercular treatment among multi-drug resistant (MDR) patients and blocking the spread of MDR and extensively drug-resistant tuberculosis. Molecular methods have the potency to provide accurate and rapid drug susceptibility results. We aimed to establish and evaluate the accuracy of a reverse dot blot hybridization (RDBH) assay to simultaneously detect the resistance of fluoroquinolones (FQs), kanamycin (KN), amikacin (AMK), capreomycin (CPM) and second-line injectable drugs (SLIDs) in Mycobacterium tuberculosis. Methods We established and evaluated the accuracy of the RDBH assay by comparing to the phenotypic drug susceptibility testing (DST) and sequencing in 170 M. tuberculosis, of which 94 and 27 were respectively resistant to ofloxacin (OFX) and SLIDs. Results The results show that, compared to phenotypic DST, the sensitivity and specificity of the RDBH assay for resistance detection were 63.8% and 100.0% for OFX, 60.0% and 100.0% for KN, 61.5% and 98.1% for AMK, 50.0% and 99.3% for CPM, and 55.6% and 100% for SLIDs, respectively; compared to sequencing, the sensitivity and specificity of the RDBH assay were 95.2% and 100.0% for OFX, 93.8% and 100.0% for SLIDs or KN (both based on mutations in rrs 1400 region and eis promoter), and 91.6% and 100.0% for AMK or CPM (both based on mutations in rrs 1400 region), respectively. The turnaround time of the RDBH assay was 7 h for testing 42 samples. Conclusion Our data suggested that compared to sequencing, the RDBH assay could serve as a rapid and reliable method for testing the resistance of M. tuberculosis against OFX and SLIDs, enabling early administration of appropriate treatment regimens among MDR tuberculosis patients.
Collapse
Affiliation(s)
- Guilian Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China
| | - Qian Guo
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China.,Department of Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Haican Liu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China
| | - Li Wan
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China
| | - Yi Jiang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China
| | - Machao Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China
| | - Li-Li Zhao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China
| | - Xiuqin Zhao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China
| | - Zhiguang Liu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China
| | - Kanglin Wan
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China
| |
Collapse
|