1
|
Deodato F, Pezzulla D, Cilla S, Romano C, Ferro M, Galietta E, Lancellotta V, Morganti AG, Macchia G. Stereotactic Radiosurgery with Volumetric Modulated Arc Radiotherapy: Final Results of a Multi-arm Phase I Trial (DESTROY-2). Clin Oncol (R Coll Radiol) 2024; 36:632-641. [PMID: 38971684 DOI: 10.1016/j.clon.2024.06.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/16/2024] [Accepted: 06/13/2024] [Indexed: 07/08/2024]
Abstract
AIMS To present the final results of a phase I trial on stereotactic radiosurgery (SRS) delivered using volumetric modulated arc therapy (VMAT) in patients with primary or metastatic tumors in different extracranial sites. MATERIALS AND METHODS The DESTROY-2 trial, planned as a prospective dose escalation study in oligometastatic (one to five lesions) cancer patients relied on the delivery of a single high dose of radiation utilizing high-precision technology. The primary study endpoint was the definition of the maximum tolerated dose (MTD) of SRS-VMAT. The secondary objectives of the study were the evaluation of safety, efficacy, and long-term outcomes. All patients consecutively observed at our radiotherapy unit matching the inclusion criteria were enrolled. Each enrolled subject was included in a different phase I study arm, depending on the tumor site and the disease stage (lung, liver, bone, other), and sequentially assigned to a particular dose level. RESULTS Two hundred twenty seven lesions in 164 consecutive patients (male/female: 97/67, median age: 68 years; range: 29-92) were treated. The main primary tumors were: prostate cancer (60 patients), colorectal cancer (47 patients), and breast cancer (39 patients). The maximum planned dose level was achieved in all study arms, and the MTD was not exceeded. 34 Gy, 32 Gy, 24 Gy, and 24 Gy were established as the single-fraction doses for treating lung, liver, bone, and other extracranial lesions, respectively. The prescribed BED 2Gyα/β:10 to the planning target volume ranged from 26.4 Gy to 149.6 Gy. Twenty-seven patients (16.5%) experienced grade 1-2 and only one grade 3 acute toxicity, which was a pulmonary one. In terms of late toxicity, we registered only 5 toxicity>G2: a G3 gastro-intestinal one, three G3 bone toxicity, and a G3 laryngeal toxicity. The overall response was available for 199 lesions: 107 complete response (53.8%), 50 partial response (25.1%), and 31 stable disease (15.6%), leading to an overall response rate of 94.5%. Progression was registered only in 11 cases (5.5%). The overall response rate in each arm ranged from 88.6% to 96.4%. The overall two-year local control, distant metastasis free survival, disease free survival, and overall survival were 81.7%, 33.0%, 25.4%, and 78.7% respectively. CONCLUSION In conclusion, the planned doses of 34 Gy, 32 Gy, 24 Gy, and 24 Gy were successfully administered as single-fractions for the treatment of lung, liver, bone, and other extracranial lesions, respectively, in a prospective SRS dose-escalation trial. No dose-limiting toxicities were registered, and minimal acute and late toxicity were reported. New indications for SRS are currently being studied in oligoprogressive patients receiving targeted drugs or in combination with immunotherapy. The DESTROY-2 trial represents, in our opinion, a credible starting point for future modern radiosurgery trials.
Collapse
Affiliation(s)
- F Deodato
- Radiation Oncology Unit, Responsible Research Hospital, Campobasso, Italy; Radiology Institute, Università Cattolica del Sacro Cuore, Rome 00135, Italy
| | - D Pezzulla
- Radiation Oncology Unit, Responsible Research Hospital, Campobasso, Italy.
| | - S Cilla
- Medical Physics Unit, Responsible Research Hospital, Campobasso, Italy
| | - C Romano
- Medical Physics Unit, Responsible Research Hospital, Campobasso, Italy
| | - Mi Ferro
- Radiation Oncology Unit, Responsible Research Hospital, Campobasso, Italy
| | - E Galietta
- Department of Experimental, Diagnostic, and Specialty Medicine - DIMES, Alma Mater Studiorum Bologna, University, Bologna, Italy; Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - V Lancellotta
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A Gemelli IRCCS, UOC di Radioterapia Oncologica, Rome, Italy
| | - A G Morganti
- Department of Experimental, Diagnostic, and Specialty Medicine - DIMES, Alma Mater Studiorum Bologna, University, Bologna, Italy; Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - G Macchia
- Radiation Oncology Unit, Responsible Research Hospital, Campobasso, Italy
| |
Collapse
|
2
|
Tseng HS, Lin CF, Yang HC, Chen CJ, Lin SC, Wu HM, Hu YS, Lin CJ, Chung WY, Shiau CY, Guo WY, Hung-Chi Pan D, Lee CC. Natural History and Histopathology of Expanding Cysts and Hematomas After Stereotactic Radiosurgery for Arteriovenous Malformations of the Brain: A Case Series. World Neurosurg 2024; 182:e854-e865. [PMID: 38104931 DOI: 10.1016/j.wneu.2023.12.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND We reviewed the clinical course and histopathologic findings for cases involving the formation of expanding cysts and/or hematomas after gamma knife surgery (GKS) for arteriovenous malformations (AVMs). METHODS We report a single-center retrospective review of 18 patients who presented with cyst and/or hematoma expansion after GKS for AVMs between 1993 and 2023. Expanding cysts and hematomas were defined as well-demarcated cavities filled with fluid or well-marginated heterogenous hematomas presenting with expansion proximal to or in the location of the original AVM, respectively. Patient demographics, AVM characteristics, history of interventions and surgeries, and imaging and histopathologic features of expanding cysts and hematomas were collected for analysis. RESULTS Among 1072 AVM patients treated using GKS, 18 presented with expanding cysts or hematomas during a total follow-up period of 16,757 patient-years (0.11 case/100 persons/patient-year). The time to cyst or hematoma identification was 4-13 years after initial GKS, with a mean duration of 8.6 years. Among the patients examined, 7 (38.9%) presented mainly with hematoma, 10 (55.6%) presented mainly with cysts, and 1 presented with approximately equal components of both. Among the 18 patients, 13 (72.2%) underwent craniotomy to treat cyst or hematoma expansion. All the specimens had similar histopathologic characteristics, including organizing hematoma with fresh and old hemorrhage, fibrinoid necrosis of the vessels, gliosis of normal brain tissue, infiltration of hemosiderin-laden histiocytes, and extravascular protein leakage. CONCLUSIONS Our findings suggest that the formation of these 2 complications can be attributed to a common mechanism involving radiation-induced vascular damage in brain tissue adjacent to the AVM and subsequent chronic inflammation and capillary dilatation.
Collapse
Affiliation(s)
- Han-Song Tseng
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chun-Fu Lin
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Huai-Che Yang
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ching-Jen Chen
- Department of Neurosurgery, The University of Texas Health Science Center, Houston, Texas, USA
| | - Shih-Chieh Lin
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Pathology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsiu-Mei Wu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yong-Sin Hu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chung-Jung Lin
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Yuh Chung
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Ying Shiau
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Cancer Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wan-Yuo Guo
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - David Hung-Chi Pan
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Chia Lee
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
3
|
Newman WC, Larsen AG, Bilsky MH. The NOMS approach to metastatic tumors: Integrating new technologies to improve outcomes. Rev Esp Cir Ortop Traumatol (Engl Ed) 2023; 67:487-499. [PMID: 37116749 DOI: 10.1016/j.recot.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/23/2023] [Indexed: 04/30/2023] Open
Abstract
Treatment paradigms for patients with spine metastases have evolved significantly over the past two decades. The most transformative change to these paradigms has been the integration of spinal stereotactic radiosurgery (sSRS). sSRS allows for the delivery of tumoricidal radiation doses with sparing of nearby organs at risk, particularly the spinal cord. Evidence supports the safety and efficacy of radiosurgery as it currently offers durable local tumor control with low complication rates even for tumors previously considered radioresistant to conventional external beam radiation therapy. The role for surgical intervention remains consistent, but a trend has been observed toward less aggressive, often minimally invasive techniques. Using modern technologies and improved instrumentation, surgical outcomes continue to improve with reduced morbidity. Additionally, targeted agents such as biologics and checkpoint inhibitors have revolutionized cancer care by improving both local control and patient survival. These advances have brought forth a need for new prognostication tools and a more critical review of long-term outcomes. The complex nature of current treatment schemes necessitates a multidisciplinary approach including surgeons, medical oncologists, radiation oncologists, interventionalists and pain specialists. This review recapitulates the current state-of-the-art, evidence-based data on the treatment of spinal metastases and integrates these data into a decision framework, NOMS, which is based on four sentinel pillars of decision making in metastatic spine tumors: Neurological status, Oncologic tumor behavior, Mechanical stability, and Systemic disease burden and medical co-morbidities.
Collapse
Affiliation(s)
- W C Newman
- Memorial Sloan Kettering Cancer Center, India
| | - A G Larsen
- Memorial Sloan Kettering Cancer Center, India; Weill Medical College of Cornell University, India
| | - M H Bilsky
- Memorial Sloan Kettering Cancer Center, India; Weill Medical College of Cornell University, India.
| |
Collapse
|
4
|
Newman WC, Larsen AG, Bilsky MH. The NOMS approach to metastatic tumors: Integrating new technologies to improve outcomes. Rev Esp Cir Ortop Traumatol (Engl Ed) 2023; 67:S487-S499. [PMID: 37562765 DOI: 10.1016/j.recot.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/23/2023] [Indexed: 08/12/2023] Open
Abstract
Treatment paradigms for patients with spine metastases have evolved significantly over the past two decades. The most transformative change to these paradigms has been the integration of spinal stereotactic radiosurgery (sSRS). sSRS allows for the delivery of tumoricidal radiation doses with sparing of nearby organs at risk, particularly the spinal cord. Evidence supports the safety and efficacy of radiosurgery as it currently offers durable local tumor control with low complication rates even for tumors previously considered radioresistant to conventional external beam radiation therapy. The role for surgical intervention remains consistent, but a trend has been observed toward less aggressive, often minimally invasive techniques. Using modern technologies and improved instrumentation, surgical outcomes continue to improve with reduced morbidity. Additionally, targeted agents such as biologics and checkpoint inhibitors have revolutionized cancer care by improving both local control and patient survival. These advances have brought forth a need for new prognostication tools and a more critical review of long-term outcomes. The complex nature of current treatment schemes necessitates a multidisciplinary approach including surgeons, medical oncologists, radiation oncologists, interventionalists and pain specialists. This review recapitulates the current state-of-the-art, evidence-based data on the treatment of spinal metastases and integrates these data into a decision framework, NOMS, which is based on four sentinel pillars of decision making in metastatic spine tumors: neurological status, Oocologic tumor behavior, mechanical stability and systemic disease burden and medical co-morbidities.
Collapse
Affiliation(s)
- W C Newman
- Memorial Sloan Kettering Cancer Center, Chennai, Tamil Nadu, India
| | - A G Larsen
- Memorial Sloan Kettering Cancer Center, Chennai, Tamil Nadu, India; Weill Medical College of Cornell University, India
| | - M H Bilsky
- Memorial Sloan Kettering Cancer Center, Chennai, Tamil Nadu, India; Weill Medical College of Cornell University, India.
| |
Collapse
|
5
|
Yang X, Ren H, Xu Y, Peng X, Yu W, Shen Z. Combination of radiotherapy and targeted therapy for HER2-positive breast cancer brain metastases. Eur J Med Res 2023; 28:27. [PMID: 36642742 PMCID: PMC9841677 DOI: 10.1186/s40001-022-00894-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/09/2022] [Indexed: 01/17/2023] Open
Abstract
Radiotherapy and targeted therapy are essential treatments for patients with brain metastases from human epidermal growth factor receptor 2 (HER2)-positive breast cancer. However, the combination of radiotherapy and targeted therapy still needs to be investigated, and neurotoxicity induced by radiotherapy for brain metastases has also become an important issue of clinical concern. It remained unclear how to achieve the balance of efficacy and toxicity with the application of new radiotherapy techniques and new targeted therapy drugs. This article reviews the benefits and potential risk of combining radiotherapy and targeted therapy for HER2-positive breast cancer with brain metastases.
Collapse
Affiliation(s)
- Xiaojing Yang
- grid.16821.3c0000 0004 0368 8293Department of Oncology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600, Yishan Road, Shanghai, 200233 China ,grid.16821.3c0000 0004 0368 8293Department of Radiation Oncology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanru Ren
- grid.8547.e0000 0001 0125 2443Department of Orthopedics, Pudong Medical Center, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Yi Xu
- grid.16821.3c0000 0004 0368 8293Department of Oncology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600, Yishan Road, Shanghai, 200233 China
| | - Xue Peng
- grid.16821.3c0000 0004 0368 8293Department of Breast Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenxi Yu
- grid.16821.3c0000 0004 0368 8293Department of Oncology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600, Yishan Road, Shanghai, 200233 China
| | - Zan Shen
- grid.16821.3c0000 0004 0368 8293Department of Oncology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 600, Yishan Road, Shanghai, 200233 China
| |
Collapse
|
6
|
Newman WC, Bilsky MH. Fifty-year history of the evolution of spinal metastatic disease management. J Surg Oncol 2022; 126:913-920. [PMID: 36087077 PMCID: PMC11268045 DOI: 10.1002/jso.27028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 11/07/2022]
Abstract
Spine metastases are a significant source of morbidity in oncology. Treatment of these spine metastases largely remains palliative, but advances over the past 50 years have improved the effectiveness of interventions for preserving functional status and obtaining local control while minimizing morbidity. While the field began with conventional external beam radiation as the primary treatment modality, a series of paradigm shifts and technological advances in the 2000s led to a change in treatment patterns. These advances allowed for an increased role of surgical decompression of neural elements, a shift in the stereotactic capabilities of radiation oncologists, and an improved understanding of the radiobiology of metastatic disease. The result was improved local control while minimizing treatment morbidity. These advances fit within the larger framework of metastatic spine tumor management known as the Neurologic, Oncologic, Mechanical, and Systemic disease decision framework. This dynamic framework takes into account the neurological function of the patient, the radiobiology of their tumor, their degree of mechanical instability, and their systemic disease control and treatment options to help determine appropriate interventions based on the individual patient. Herein, we describe the 50-year evolution of metastatic spine tumor management and the impact of various advances on the field.
Collapse
Affiliation(s)
- W Christopher Newman
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Mark H Bilsky
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Neurological Surgery, Weill Cornell Medical College, New York-Presbyterian Hospital, New York, New York, USA
| |
Collapse
|