1
|
Yi M, Dai S, Fang L, Pan B, Fan B, Pan Y, Liu Z. Influence of Occult Hepatitis B Infection on Blood Transfusion Safety and Its Countermeasures. Pathogens 2025; 14:301. [PMID: 40333041 PMCID: PMC12030072 DOI: 10.3390/pathogens14040301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 05/09/2025] Open
Abstract
Occult hepatitis B infection (OBI) is a serious public health issue. Although a number of effective hepatitis B vaccines are available, hepatitis B still poses a threat to global public health. Patients with OBI are usually asymptomatic, but there may be active HBV DNA present in their blood, leading to the risk of virus transmission during blood transfusions or organ transplantation, constituting a hazard to the health of recipients and increasing the risk of liver cirrhosis and liver cancer. Although China has progressed in the development of blood-screening technology, OBI is still a significant hidden danger to blood transfusion safety. Therefore, in blood screening and blood transfusion, strengthening the monitoring and management of OBI is crucial to ensure blood safety and protect public health.
Collapse
Affiliation(s)
- Meng Yi
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Peking Union Medical College, Chengdu 610052, China; (M.Y.); (S.D.); (L.F.); (B.P.); (B.F.); (Y.P.)
| | - Shuchang Dai
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Peking Union Medical College, Chengdu 610052, China; (M.Y.); (S.D.); (L.F.); (B.P.); (B.F.); (Y.P.)
- China Key Laboratory of Transfusion Adverse Reactions, Chinese Academy of Medical Sciences, Chengdu 610052, China
| | - Lin Fang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Peking Union Medical College, Chengdu 610052, China; (M.Y.); (S.D.); (L.F.); (B.P.); (B.F.); (Y.P.)
- China Key Laboratory of Transfusion Adverse Reactions, Chinese Academy of Medical Sciences, Chengdu 610052, China
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Bo Pan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Peking Union Medical College, Chengdu 610052, China; (M.Y.); (S.D.); (L.F.); (B.P.); (B.F.); (Y.P.)
- China Key Laboratory of Transfusion Adverse Reactions, Chinese Academy of Medical Sciences, Chengdu 610052, China
| | - Bin Fan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Peking Union Medical College, Chengdu 610052, China; (M.Y.); (S.D.); (L.F.); (B.P.); (B.F.); (Y.P.)
| | - Yiming Pan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Peking Union Medical College, Chengdu 610052, China; (M.Y.); (S.D.); (L.F.); (B.P.); (B.F.); (Y.P.)
- China Key Laboratory of Transfusion Adverse Reactions, Chinese Academy of Medical Sciences, Chengdu 610052, China
| | - Zhong Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, Peking Union Medical College, Chengdu 610052, China; (M.Y.); (S.D.); (L.F.); (B.P.); (B.F.); (Y.P.)
- China Key Laboratory of Transfusion Adverse Reactions, Chinese Academy of Medical Sciences, Chengdu 610052, China
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
2
|
Giraud G, Rodà M, Huchon P, Michelet M, Maadadi S, Jutzi D, Montserret R, Ruepp MD, Parent R, Combet C, Zoulim F, Testoni B. G-quadruplexes control hepatitis B virus replication by promoting cccDNA transcription and phase separation in hepatocytes. Nucleic Acids Res 2024; 52:2290-2305. [PMID: 38113270 PMCID: PMC10954475 DOI: 10.1093/nar/gkad1200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/12/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023] Open
Abstract
Phase separation regulates fundamental processes in gene expression and is mediated by the local concentration of proteins and nucleic acids, as well as nucleic acid secondary structures such as G-quadruplexes (G4s). These structures play fundamental roles in both host gene expression and in viral replication due to their peculiar localisation in regulatory sequences. Hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) is an episomal minichromosome whose persistence is at the basis of chronic infection. Identifying the mechanisms controlling its transcriptional activity is indispensable to develop new therapeutic strategies against chronic hepatitis B. The aim of this study was to determine whether G4s are formed in cccDNA and regulate viral replication. Combining biochemistry and functional studies, we demonstrate that cccDNA indeed contains ten G4s structures. Furthermore, mutations disrupting two G4s located in the enhancer I HBV regulatory region altered cccDNA transcription and viral replication. Finally, we showed for the first time that cccDNA undergoes phase separation in a G4-dependent manner to promote its transcription in infected hepatocytes. Altogether, our data give new insight in the transcriptional regulation of the HBV minichromosome that might pave the way for the identification of novel targets to destabilize or silence cccDNA.
Collapse
Affiliation(s)
- Guillaume Giraud
- INSERM U1052, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR)-5286, Cancer Research Center of Lyon, 69003 Lyon, France; Université Claude-Bernard Lyon I, 69003 Lyon, France
- Hepatology Institute of Lyon, 69004 Lyon, France
| | - Mélanie Rodà
- INSERM U1052, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR)-5286, Cancer Research Center of Lyon, 69003 Lyon, France; Université Claude-Bernard Lyon I, 69003 Lyon, France
- Hepatology Institute of Lyon, 69004 Lyon, France
| | - Pélagie Huchon
- INSERM U1052, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR)-5286, Cancer Research Center of Lyon, 69003 Lyon, France; Université Claude-Bernard Lyon I, 69003 Lyon, France
- Hepatology Institute of Lyon, 69004 Lyon, France
- Université Claude-Bernard Lyon I, 69003 Lyon, France
| | - Maud Michelet
- INSERM U1052, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR)-5286, Cancer Research Center of Lyon, 69003 Lyon, France; Université Claude-Bernard Lyon I, 69003 Lyon, France
- Hepatology Institute of Lyon, 69004 Lyon, France
| | - Sarah Maadadi
- INSERM U1052, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR)-5286, Cancer Research Center of Lyon, 69003 lyon, france; université claude-bernard lyon i, 69003 Lyon, France
| | - Daniel Jutzi
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, WC2R 2LS London, UK
| | - Roland Montserret
- Molecular Microbiology and Structural Biochemistry (MMSB) UMR 5086 CNRS/Université de Lyon, Labex Ecofect, 7 Passage du Vercors 69367Lyon, France
| | - Marc-David Ruepp
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, WC2R 2LS London, UK
| | - Romain Parent
- INSERM U1052, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR)-5286, Cancer Research Center of Lyon, 69003 Lyon, France; Université Claude-Bernard Lyon I, 69003 Lyon, France
- Hepatology Institute of Lyon, 69004 Lyon, France
| | - Christophe Combet
- INSERM U1052, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR)-5286, Cancer Research Center of Lyon, 69003 Lyon, France; Université Claude-Bernard Lyon I, 69003 Lyon, France
- Hepatology Institute of Lyon, 69004 Lyon, France
| | - Fabien Zoulim
- INSERM U1052, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR)-5286, Cancer Research Center of Lyon, 69003 Lyon, France; Université Claude-Bernard Lyon I, 69003 Lyon, France
- Hepatology Institute of Lyon, 69004 Lyon, France
- Université Claude-Bernard Lyon I, 69003 Lyon, France
- Hepatology Service, Hospices Civils de Lyon, 69004 Lyon, France
| | - Barbara Testoni
- INSERM U1052, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR)-5286, Cancer Research Center of Lyon, 69003 Lyon, France; Université Claude-Bernard Lyon I, 69003 Lyon, France
- Hepatology Institute of Lyon, 69004 Lyon, France
| |
Collapse
|
3
|
He P, Zhang P, Fang Y, Han N, Yang W, Xia Z, Zhu Y, Zhang Z, Shen J. The role of HBV cccDNA in occult hepatitis B virus infection. Mol Cell Biochem 2023; 478:2297-2307. [PMID: 36735210 DOI: 10.1007/s11010-023-04660-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/09/2023] [Indexed: 02/04/2023]
Abstract
Occult hepatitis B virus (HBV) infection (OBI) refers to the presence of replication-competent HBV DNA in the liver, with or without HBV DNA in the blood, in individuals who tested negative for HBV surface antigen (HBsAg). In this peculiar phase of HBV infection, the covalently closed circular DNA (cccDNA) is in a low state of replication. Several advances have been made toward clarifying the mechanisms involved in such a suppression of viral activity, which seems to be mainly related to the host's immune control and epigenetic factors. Although the underlying mechanisms describing the genesis of OBI are not completely known, the presence of viral cccDNA, which remains in a low state of replication due to the host's strong immune suppression of HBV replication and gene expression, appears to be the causative factor. Through this review, we have provided an updated account on the role of HBV cccDNA in regulating OBI. We have comprehensively described the HBV cell cycle, cccDNA kinetics, current regulatory mechanisms, and the therapeutic methods of cccDNA in OBI-related diseases.
Collapse
Affiliation(s)
- Pei He
- Department of Laboratory Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230012, People's Republic of China
- Anhui Public Health Clinical Center, Hefei, 230012, People's Republic of China
- Department of Infectious Diseases, The Second Hospital of Anhui Medical University, Hefei, China
| | - Peixin Zhang
- Department of Infectious Diseases, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yaping Fang
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Hefei, China
| | - Ning Han
- Department of Clinical Laboratory, The Second Hospital of Anhui Medical University, Hefei, China
| | - Wensu Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230012, People's Republic of China
- Anhui Public Health Clinical Center, Hefei, 230012, People's Republic of China
| | - Zhaoxin Xia
- Department of Laboratory Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230012, People's Republic of China
- Anhui Public Health Clinical Center, Hefei, 230012, People's Republic of China
| | - Yi Zhu
- Department of Laboratory Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230012, People's Republic of China
- Anhui Public Health Clinical Center, Hefei, 230012, People's Republic of China
| | - Zhenhua Zhang
- Department of Infectious Diseases, The Second Hospital of Anhui Medical University, Hefei, China.
| | - Jilu Shen
- Department of Laboratory Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230012, People's Republic of China.
- Anhui Public Health Clinical Center, Hefei, 230012, People's Republic of China.
| |
Collapse
|
4
|
Van Damme E, Vanhove J, Severyn B, Verschueren L, Pauwels F. The Hepatitis B Virus Interactome: A Comprehensive Overview. Front Microbiol 2021; 12:724877. [PMID: 34603251 PMCID: PMC8482013 DOI: 10.3389/fmicb.2021.724877] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/17/2021] [Indexed: 12/19/2022] Open
Abstract
Despite the availability of a prophylactic vaccine, chronic hepatitis B (CHB) caused by the hepatitis B virus (HBV) is a major health problem affecting an estimated 292 million people globally. Current therapeutic goals are to achieve functional cure characterized by HBsAg seroclearance and the absence of HBV-DNA after treatment cessation. However, at present, functional cure is thought to be complicated due to the presence of covalently closed circular DNA (cccDNA) and integrated HBV-DNA. Even if the episomal cccDNA is silenced or eliminated, it remains unclear how important the high level of HBsAg that is expressed from integrated HBV DNA is for the pathology. To identify therapies that could bring about high rates of functional cure, in-depth knowledge of the virus' biology is imperative to pinpoint mechanisms for novel therapeutic targets. The viral proteins and the episomal cccDNA are considered integral for the control and maintenance of the HBV life cycle and through direct interaction with the host proteome they help create the most optimal environment for the virus whilst avoiding immune detection. New HBV-host protein interactions are continuously being identified. Unfortunately, a compendium of the most recent information is lacking and an interactome is unavailable. This article provides a comprehensive review of the virus-host relationship from viral entry to release, as well as an interactome of cccDNA, HBc, and HBx.
Collapse
Affiliation(s)
- Ellen Van Damme
- Janssen Research & Development, Janssen Pharmaceutical Companies, Beerse, Belgium
| | - Jolien Vanhove
- Janssen Research & Development, Janssen Pharmaceutical Companies, Beerse, Belgium.,Early Discovery Biology, Charles River Laboratories, Beerse, Belgium
| | - Bryan Severyn
- Janssen Research & Development, Janssen Pharmaceutical Companies, Springhouse, PA, United States
| | - Lore Verschueren
- Janssen Research & Development, Janssen Pharmaceutical Companies, Beerse, Belgium
| | - Frederik Pauwels
- Janssen Research & Development, Janssen Pharmaceutical Companies, Beerse, Belgium
| |
Collapse
|
5
|
Shen C, Feng X, Mao T, Yang D, Zou J, Zao X, Deng Q, Chen X, Lu F. Yin-Yang 1 and HBx protein activate HBV transcription by mediating the spatial interaction of cccDNA minichromosome with cellular chromosome 19p13.11. Emerg Microbes Infect 2021; 9:2455-2464. [PMID: 33084547 PMCID: PMC7671595 DOI: 10.1080/22221751.2020.1840311] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
HBV cccDNA stably exists in the nuclei of infected cells as an episomal munichromosome which is responsible for viral persistence and failure of current antiviral treatments. However, the regulatory mechanism of cccDNA transcription by viral and host cellular factors is not well understood. In this study, we investigated whether cccDNA could be recruited into a specific region of the nucleus via specific interaction with a cellular chromatin to regulate its transcription activity. To investigate this hypothesis, we used chromosome conformation capture (3C) technology to search for the potential interaction of cccDNA and cellular chromatin through rcccDNA transfection in hepatoma cells and found that cccDNA is specifically associated with human chromosome 19p13.11 region, which contains a highly active enhancer element. We also confirmed that cellular transcription factor Yin-Yang 1 (YY1) and viral protein HBx mediated the spatial regulation of HBV cccDNA transcription by 19p13.11 enhancer. Thus, These findings indicate that YY1 and HBx mediate the recruitment of HBV cccDNA minichromosomes to 19p13.11 region for transcription activation, and YY1 may present as a novel therapeutic target against HBV infection.
Collapse
Affiliation(s)
- Congle Shen
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Xiaoyu Feng
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Tianhao Mao
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Danli Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Jun Zou
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Xiaobin Zao
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Qiang Deng
- Key Laboratory of Medical Molecular Virology (MOE & MOH), School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Xiangmei Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Fengmin Lu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| |
Collapse
|
6
|
Wang Z, Wang W, Wang L. Epigenetic regulation of covalently closed circular DNA minichromosome in hepatitis B virus infection. BIOPHYSICS REPORTS 2020. [DOI: 10.1007/s41048-020-00112-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|