1
|
Ajose DJ, Adekanmbi AO, Kamaruzzaman NF, Ateba CN, Saeed SI. Combating antibiotic resistance in a one health context: a plethora of frontiers. ONE HEALTH OUTLOOK 2024; 6:19. [PMID: 39487542 PMCID: PMC11531134 DOI: 10.1186/s42522-024-00115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/20/2024] [Indexed: 11/04/2024]
Abstract
One of the most significant medical advancements of the 20th century was the discovery of antibiotics, which continue to play a vital tool in the treatment and prevention of diseases in humans and animals. However, the imprudent use of antibiotics in all fields of One-Health and concerns about antibiotic resistance among bacterial pathogens have raised interest in antibiotic use restrictions on a global scale. Despite the failure of conventional antimicrobial agents, only about 15 new antibiotics have been introduced clinically since year 2000 to date. Moreover, there has been reports of resistance to some of these new antibiotics. This has necessitated a need to search for alternative strategies to combat antimicrobial resistant pathogens. Thus, this review compiles and evaluates the approaches-natural compounds, phage treatment, and nanomaterials-that are being used and/or suggested as the potential substitutes for conventional antibiotics.
Collapse
Affiliation(s)
- Daniel Jesuwenu Ajose
- Antimicrobial Resistance and Phage Biocontrol Research Group (AREPHABREG), Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho, 2735, South Africa.
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa.
| | - Abimbola Olumide Adekanmbi
- Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Nor Fadhilah Kamaruzzaman
- Nanotechnology Research Group Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, Kelantan, 16100, Malaysia
| | - Collins Njie Ateba
- Antimicrobial Resistance and Phage Biocontrol Research Group (AREPHABREG), Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho, 2735, South Africa
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Shamsaldeen Ibrahim Saeed
- College of Veterinary Medicine, University of Juba, P.O. Box 82, Juba, Central Equatoria, South Sudan.
- Department of microbiology, Faculty of Veterinary Science, University of Nyala, P.O. Box 155, Nyala, Sudan.
- Nanotechnology Research Group Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Kota Bharu, Kelantan, 16100, Malaysia.
| |
Collapse
|
2
|
Zavišić G, Popović M, Stojkov S, Medić D, Gusman V, Jovanović Lješković N, Jovanović Galović A. Antibiotic Resistance and Probiotics: Knowledge Gaps, Market Overview and Preliminary Screening. Antibiotics (Basel) 2023; 12:1281. [PMID: 37627701 PMCID: PMC10451169 DOI: 10.3390/antibiotics12081281] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Probiotics are among those products, the use of which is increasing, and they are available primarily as food/dietary supplements, as well as in the form of medicines. This study aims to assess the attitudes and practices of health professionals and students of health sciences, give a short overview of the probiotics currently on the market, and conduct a screening of five food supplements and one drug with respect to antibiotic resistance. Nearly half of the respondents in our survey state that probiotics have no side effects, while only 6.3% believe that the use of probiotics can lead to antibiotic resistance. In addition, more than 40% of the participants throw unused probiotics into municipal waste. The market analysis results indicate that probiotic products on the Serbian market have highly variable CFU counts, while the declared health claims cover numerous beneficial health effects, and they are sometimes even registered as medicines. Lactobacilli are frequently present in probiotic supplements, and are sold in pharmacies and online. The experimental results showed that antibiotic resistance is present in different types of lactobacilli in probiotic products. The risk of using probiotics, regardless of their beneficial health effects, should be taken into account in the future. An update to the regulations governing probiotics, including a stipulation for antimicrobial resistance (AMR) testing, should be established, and guidelines for their proper use and disposal put into place.
Collapse
Affiliation(s)
- Gordana Zavišić
- Faculty of Pharmacy Novi Sad, University Business Academy, Trg Mladenaca 5, 21000 Novi Sad, Serbia; (G.Z.); (S.S.); (N.J.L.)
| | - Milka Popović
- Department of Hygiene, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia;
- Center for Hygiene and Human Ecology, Institute of Public Health of Vojvodina, Futoška 121, 21000 Novi Sad, Serbia;
| | - Svetlana Stojkov
- Faculty of Pharmacy Novi Sad, University Business Academy, Trg Mladenaca 5, 21000 Novi Sad, Serbia; (G.Z.); (S.S.); (N.J.L.)
- College of Vocational Studies for the Education of Preschool Teachers and Sports Trainers in Subotica, Banijska 67, 24000 Subotica, Serbia
| | - Deana Medić
- Department of Microbiology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia;
- Center for Microbiology, Institute of Public Health of Vojvodina, Futoška 121, 21000 Novi Sad, Serbia
| | - Vera Gusman
- Center for Hygiene and Human Ecology, Institute of Public Health of Vojvodina, Futoška 121, 21000 Novi Sad, Serbia;
- Department of Microbiology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia;
| | - Nataša Jovanović Lješković
- Faculty of Pharmacy Novi Sad, University Business Academy, Trg Mladenaca 5, 21000 Novi Sad, Serbia; (G.Z.); (S.S.); (N.J.L.)
| | - Aleksandra Jovanović Galović
- Faculty of Pharmacy Novi Sad, University Business Academy, Trg Mladenaca 5, 21000 Novi Sad, Serbia; (G.Z.); (S.S.); (N.J.L.)
| |
Collapse
|
3
|
Van Holm W, Lauwens K, De Wever P, Schuermans A, Zayed N, Pamuk F, Saghi M, Fardim P, Bernaerts K, Boon N, Teughels W. Probiotics for oral health: do they deliver what they promise? Front Microbiol 2023; 14:1219692. [PMID: 37485503 PMCID: PMC10358723 DOI: 10.3389/fmicb.2023.1219692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Probiotics have demonstrated oral health benefits by influencing the microbiome and the host. Although promising, their current use is potentially constrained by several restrictions. One such limiting factor lies in the prevailing preparation of a probiotic product. To commercialize the probiotic, a shelf stable product is achieved by temporarily inactivating the live probiotic through drying or freeze drying. Even though a lyophilized probiotic can be kept dormant for an extended period of time, their viability can be severely compromised, making their designation as probiotics questionable. Additionally, does the application of an inactive probiotic directly into the oral cavity make sense? While the dormancy may allow for survival on its way towards the gut, does it affect their capacity for oral colonisation? To evaluate this, 21 probiotic product for oral health were analysed for the number of viable (probiotic), culturable (CFU) and dead (postbiotic) cells, to verify whether the commercial products indeed contain what they proclaim. After isolating and uniformly lyophilizing three common probiotic species in a simple yet effective lyoprotective medium, the adhesion to saliva covered hydroxyapatite discs of lyophilized probiotics was compared to fresh or reactivated lyophilized probiotics. Unfortunately, many of the examined products failed to contain the claimed amounts of viable cells, but also the strains used were inadequately characterized and lacked clinical evidence for that unknown strain, questioning their label of a 'probiotic'. Additionally, lyophilized probiotics demonstrated low adhesive capacity compared to their counterparts, prompting the question of why fresh or reactivated probiotics are not currently used.
Collapse
Affiliation(s)
- Wannes Van Holm
- Department of Oral Health Sciences, University of Leuven KU Leuven, Leuven, Belgium
- Centre for Microbial Ecology and Technology (CMET), Ghent University (UGent), Ghent, Belgium
| | - Katalina Lauwens
- Department of Oral Health Sciences, University of Leuven KU Leuven, Leuven, Belgium
| | - Pieter De Wever
- Bio-and Chemical Systems Technology, Reactor Engineering and Safety, Department of Chemical Engineering, University of Leuven KU Leuven, Leuven, Belgium
| | | | - Naiera Zayed
- Department of Oral Health Sciences, University of Leuven KU Leuven, Leuven, Belgium
- Centre for Microbial Ecology and Technology (CMET), Ghent University (UGent), Ghent, Belgium
- Faculty of Pharmacy, Menoufia University, Shebeen El-Kom, Egypt
| | - Ferda Pamuk
- Department of Oral Health Sciences, University of Leuven KU Leuven, Leuven, Belgium
| | - Mehraveh Saghi
- Department of Oral Health Sciences, University of Leuven KU Leuven, Leuven, Belgium
| | - Pedro Fardim
- Bio-and Chemical Systems Technology, Reactor Engineering and Safety, Department of Chemical Engineering, University of Leuven KU Leuven, Leuven, Belgium
| | - Kristel Bernaerts
- Bio-and Chemical Systems Technology, Reactor Engineering and Safety, Department of Chemical Engineering, University of Leuven KU Leuven, Leuven, Belgium
| | - Nico Boon
- Centre for Microbial Ecology and Technology (CMET), Ghent University (UGent), Ghent, Belgium
| | - Wim Teughels
- Department of Oral Health Sciences, University of Leuven KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Ghelardi E, Mazzantini D, Celandroni F, Calvigioni M, Panattoni A, Lupetti A, Bois De Fer B, Perez M. Analysis of the microbial content of probiotic products commercialized worldwide and survivability in conditions mimicking the human gut environment. Front Microbiol 2023; 14:1127321. [PMID: 37234535 PMCID: PMC10208119 DOI: 10.3389/fmicb.2023.1127321] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/23/2023] [Indexed: 05/28/2023] Open
Abstract
Introduction Probiotics are living microorganisms that, when administered in adequate amounts, confer a health benefit on the host. Adequate number of living microbes, the presence of specific microorganisms, and their survival in the gastrointestinal (GI) environment are important to achieve desired health benefits of probiotic products. In this in vitro study, 21 leading probiotic formulations commercialized worldwide were evaluated for their microbial content and survivability in simulated GI conditions. Methods Plate-count method was used to determine the amount of living microbes contained in the products. Culture-dependent Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry and culture-independent metagenomic analysis through 16S and 18S rDNA sequencing were applied in combination for species identification. To estimate the potential survivability of the microorganisms contained in the products in the harsh GI environment, an in vitro model composed of different simulated gastric and intestinal fluids was adopted. Results The majority of the tested probiotic products were concordant with the labels in terms of number of viable microbes and contained probiotic species. However, one product included fewer viable microbes than those displayed on the label, one product contained two species that were not declared, and another product lacked one of the labeled probiotic strains. Survivability in simulated acidic and alkaline GI fluids was highly variable depending on the composition of the products. The microorganisms contained in four products survived in both acidic and alkaline environments. For one of these products, microorganisms also appeared to grow in the alkaline environment. Conclusion This in vitro study demonstrates that most globally commercialized probiotic products are consistent with the claims described on their labels with respect to the number and species of the contained microbes. Evaluated probiotics generally performed well in survivability tests, although viability of microbes in simulated gastric and intestinal environments showed large variability. Although the results obtained in this study indicate a good quality of the tested formulations, it is important to stress that stringent quality controls of probiotic products should always be performed to provide optimal health benefits for the host.
Collapse
Affiliation(s)
- Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Diletta Mazzantini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Francesco Celandroni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Marco Calvigioni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Adelaide Panattoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Antonella Lupetti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | | |
Collapse
|
5
|
Zavišić G, Ristić S, Petković B, Živkov-Šaponja D, Jojić N, Janković D. Microbiological quality of probiotic products. ARHIV ZA FARMACIJU 2023. [DOI: 10.5937/arhfarm73-42160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
Microorganisms used as probiotics should meet elementary safety aspects (non-toxicity, absence of antibiotic resistance genes and translocation) and functional/technological aspects (resistance and survival in the acid gastric environment, adhesiveness, stability, and cell viability). Probiotics with the health claim of being a dietary product or a pharmabiotic (drug category) should be clinically tested, validated, documented, and continuously controlled for quality. Important quality parameters include the identification of declared probiotic strains, the number of viable microorganisms (probiotic bacteria and/or fungi), and microbiological purity (absence of specified pathogenic/opportunistic pathogenic bacteria and fungi, and limitation of total unspecified contaminants such as aerobic bacteria, yeasts, and molds). Due to numerous reports of low-quality commercial probiotics marketed for human use, this review discusses the methods used to test the probiotic microorganism content, safety for the intended use, and proven health benefits of those probiotics whose microbiological quality deviates from the manufacturer's stated content, as well as the maintenance of cell viability, i.e., stability of the probiotic during the shelf life. In addition, the adverse effects of probiotics and the potential hazards to the health of the user are addressed.
Collapse
|
6
|
Zawistowska-Rojek A, Zaręba T, Tyski S. Microbiological Testing of Probiotic Preparations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095701. [PMID: 35565098 PMCID: PMC9099753 DOI: 10.3390/ijerph19095701] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023]
Abstract
Probiotic microorganisms that are potentially beneficial to the health of the host are commercially available in a great variety of products. Not all microorganism strains present in products have proven beneficial to the health properties. These products include not only foodstuffs but also dietary supplements, food for special medical purposes, medicinal products, as well as cosmetics and medical devices. These products contain from one to a dozen bacterial strains of the same or different species and sometimes also fungal strains. Since the pro-health effects of probiotics depend on a specific strain, the number of its cells in a dose, and the lack of pathogenic microorganisms, it is extremely important to control the quality of probiotics. Depending on the classification of a given product, its form, and its content of microorganisms, the correct determination of the number of microorganisms and their identification is crucial. This article describes the culture-dependent and culture-independent methods for testing the contents of probiotic microorganisms, in addition to biochemical and genetic methods of identification. The microbiological purity requirements for various product categories are also presented. Due to numerous reports on the low quality of probiotic products available on the market, it is important to standardise research methods for this group of products and to increase the frequency of inspections of these products.
Collapse
Affiliation(s)
- Anna Zawistowska-Rojek
- Department of Antibiotics and Microbiology, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; (T.Z.); (S.T.)
- Department of Pharmaceutical Microbiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland
- Correspondence:
| | - Tomasz Zaręba
- Department of Antibiotics and Microbiology, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; (T.Z.); (S.T.)
| | - Stefan Tyski
- Department of Antibiotics and Microbiology, National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland; (T.Z.); (S.T.)
- Department of Pharmaceutical Microbiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland
| |
Collapse
|
7
|
Rheological and textural properties of emulsion spreads based on milk fat and inulin with the addition of probiotic bacteria. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
8
|
Vlasenko I, Bandura V, Semko T, Fialkovska L, Ivanishcheva O, Palamarchuk V. Innovative approaches to the development of a new sour milk product. POTRAVINARSTVO 2021. [DOI: 10.5219/1688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The topic provides an analysis of the current approach to healthy nutrition and represents a new functional fermented milk drink based on buttermilk containing natural prebiotics - a biologically valuable complex Spirulina platensis. The main tasks of the industry as a holistic system for the management and production of food ingredients and products are outlined. The work highlights the requirements for the quality and context of the functional product manufacture, the main criteria for the consumer choice, and positioning of products in the healthy lifestyle system. The topic covers the most common pro- and prebiotics, including strains. The unique food green microalgae Spirulina platensis as a source of biologically valuable components is proposed for industrial application. A technique for the production of the fermented milk drink based on buttermilk and spirulina as prebiotic was developed and scientifically substantiated. The protein contained in buttermilk is characterized by high nutritional value, exhibits functional properties and can significantly affect the quality of the drink. To confirm this, the possibility of using buttermilk with different protein content from 2.9 to 3.2 to improve the structure of the clot in the composition of the drink and the content of spirulina from 10 to 20% was studied. As single criteria for optimizing the prescription composition of the drink at the different protein content of buttermilk used indicators of product quality - acidity, degree of syneresis, organoleptic parameters. The optimal values of the individual criteria are obtained in different ranges of protein content 3 times 1-2-2; sample 2-3.0; sample 3-3.2%, which allows you to get recommendations for the formulation of a new type of drink.
Collapse
|
9
|
How YH, Yeo SK. Oral probiotic and its delivery carriers to improve oral health: A review. MICROBIOLOGY-SGM 2021; 167. [PMID: 34351255 DOI: 10.1099/mic.0.001076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, oral probiotics have been researched on their effectiveness in reducing and preventing oral diseases. Oral probiotics could be introduced into the oral cavity to keep the equilibrium of the microbiome. Hence, the delivery carrier for oral probiotics plays an important factor to ensure a high number of oral probiotics were delivered and released into the oral cavity. This review presents a brief overview of oral microbiota and the role of oral probiotics in reducing oral diseases. Moreover, important aspects of the oral probiotic product such as viability, adherence ability, health effects, safety, and delivery site were discussed. Besides that, the importance of utilizing indigenous oral probiotics was also emphasized. Oral probiotics are commonly found in the market in the form of chewing tablets, lozenges, and capsules. Hence, the oral probiotic carriers currently used in the market and research were reviewed. Furthermore, this review introduces new potential oral probiotic delivery carriers such as oral strip, bucco-adhesive gel, and mouthwash. Their effectiveness in delivering oral probiotics for oral health was also explored.
Collapse
Affiliation(s)
- Yu-Hsuan How
- UCSI University, Department of Food Science with Nutrition, Faculty of Applied Sciences, 1, UCSI Heights, Jalan Puncak Menara Gading, Taman Connaught, 56000 Cheras, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Siok-Koon Yeo
- Taylor's University, School of Biosciences, 1, Jalan Taylor's, 47500 Subang Jaya, Selangor, Malaysia
| |
Collapse
|
10
|
Mazzantini D, Calvigioni M, Celandroni F, Lupetti A, Ghelardi E. Spotlight on the Compositional Quality of Probiotic Formulations Marketed Worldwide. Front Microbiol 2021; 12:693973. [PMID: 34354690 PMCID: PMC8329331 DOI: 10.3389/fmicb.2021.693973] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
On the worldwide market, a great number of probiotic formulations are available to consumers as drugs, dietary supplements, and functional foods. For exerting their beneficial effects on host health, these preparations should contain a sufficient amount of the indicated living microbes and be pathogen-free to be safe. Therefore, the contained microbial species and their amount until product expiry are required to be accurately reported on the labels. While commercial formulations licensed as drugs are subjected to rigorous quality controls, less stringent regulations are generally applied to preparations categorized as dietary supplements and functional foods. Many reports indicated that the content of several probiotic formulations does not always correspond to the label claims in terms of microbial identification, number of living organisms, and purity, highlighting the requirement for more stringent quality controls by manufacturers. The main focus of this review is to provide an in-depth overview of the microbiological quality of probiotic formulations commercialized worldwide. Many incongruences in the compositional quality of some probiotic formulations available on the worldwide market were highlighted. Even if manufacturers carry at least some of the responsibility for these inconsistencies, studies that analyze probiotic products should be conducted following recommended and up-to-date methodologies.
Collapse
Affiliation(s)
- Diletta Mazzantini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Marco Calvigioni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Francesco Celandroni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Antonella Lupetti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,Research Center Nutraceuticals and Food for Health-Nutrafood, University of Pisa, Pisa, Italy
| |
Collapse
|
11
|
Fusco V, Fanelli F, Chieffi D. Authenticity of probiotic foods and dietary supplements: A pivotal issue to address. Crit Rev Food Sci Nutr 2021; 62:6854-6871. [PMID: 33819118 DOI: 10.1080/10408398.2021.1907300] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The market of probiotic foods and supplements is growing rapidly but frequently the commercialized products are not compliant with their labels in terms of claimed probiotic strain(s) and labeled number of viable probiotic cells, thus mining the authenticity of these probiotic products.In this review, we provide an up-to-date overview of: (i) the current regulatory aspects, (ii) the consistency of probiotic foods and supplements with their labels, (iii) the implications of mislabeling on the quality, safety and functionality of these products and (iv) the available and most promising methods to assess the authenticity of these products, taking into account the need to discriminate among the different physiological states probiotics might be in the carrier matrices. It arises that authenticity of probiotic foods and supplements is an urgent issue, of industrial and legislation relevance, that need to be addressed. A plethora of methods are available to reach this goal, each with its own advantages and disadvantages. Protocols that combine the use of propidium monoazide (PMA) with metagenomics or polyphasic approaches including the PMA real time PCR or flow cytometry (for the viability assessment) and the whole genome sequence analysis (for the identification and typing of the probiotic strain) are the most promising that should be standardized and used by producers and regulators.
Collapse
Affiliation(s)
- Vincenzina Fusco
- National Research Council of Italy, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Francesca Fanelli
- National Research Council of Italy, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Daniele Chieffi
- National Research Council of Italy, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| |
Collapse
|
12
|
The Effect of Probiotic Yogurt Containing Lactobacillus Acidophilus LA-5 and Bifidobacterium Lactis BB-12 on Selected Anthropometric Parameters in Obese Individuals on an Energy-Restricted Diet: A Randomized, Controlled Trial. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10175830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Previous studies using probiotics have shown strain-dependent effects on body mass index (BMI), body mass, or fat mass (FM). The aim of this study was to evaluate how the addition of yogurt containing Lactobacillus acidophilus LA-5 and Bifidobacterium animalis subsp. lactis BB-12 strains to a diet plan affects selected anthropometric parameters in obese people on an energy-restricted diet. Fifty-four subjects aged 20–49 (34.52 ± 9.58) years were included in this study. The recruited subjects were assigned to two subgroups: consuming probiotic yogurt along with a hypocaloric diet (GP) (n–27) or the same diet but without an intentional introduction of yogurt (GRD) (n–27) for 12 weeks. Both GP and GRD decreased body weight, BMI, fat mass and visceral fat by 5.59 kg and 4.71 kg, 1.89 and 1.61 kg/m2, 4.80 kg and 4.07 kg, and 0.68 and 0.65 L, respectively, although the obtained differences were not significant. Analysis of GP and GRD results separately at the beginning and end of the intervention showed that fat loss was substantial in both groups (p < 0.05). Consumption of yogurt containing LA-5 and BB-12 does not significantly improve anthropometric parameters in obese patients.
Collapse
|
13
|
Jędrusek-Golińska A, Górecka D, Buchowski M, Wieczorowska-Tobis K, Gramza-Michałowska A, Szymandera-Buszka K. Recent progress in the use of functional foods for older adults: A narrative review. Compr Rev Food Sci Food Saf 2020; 19:835-856. [PMID: 33325174 DOI: 10.1111/1541-4337.12530] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 12/11/2022]
Abstract
The number and proportion of older adults are increasing globally, and it is predicted that in 2020, there will be 723 million people worldwide aged 66 and older. In recent decades, numerous studies showed that healthy eating is positively associated with better nutritional status and quality of life, and the decreased incidence of noncommunicable diseases. As older adults become health conscious, the demand for foods and beverages rich in nutrients and bioactive compounds has increased. The increased demand for healthy food stimulated a recent rapid increase in designing, producing, and marketing functional foods to prevent or correct nutrient deficiencies and to improve the nutritional status of older adults. These functional products contain and/or are enriched with dietary fiber; omega-3 polyunsaturated fatty acids; phytoestrogens; polyphenols; carotenoids such as alpha- and beta-carotene; lutein and zeaxanthin; pre-, pro-, and synbiotics; and plant sterols and stanols. A limited number of publications have thoroughly addressed the effect of functional foods on the nutritional status of older adults. The goal of this review was to review existing recent research on the role of functional foods in healthy and active aging.
Collapse
Affiliation(s)
- Anna Jędrusek-Golińska
- Department of Gastronomy Science and Functional Foods, Poznań University of Life Sciences, Poznań, Poland
| | - Danuta Górecka
- Department of Gastronomy Science and Functional Foods, Poznań University of Life Sciences, Poznań, Poland
| | - Maciej Buchowski
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Katarzyna Wieczorowska-Tobis
- Institute of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poland and Laboratory for Geriatric Medicine, Department of Palliative Care, University of Medical Science, Poznań, Poland
| | - Anna Gramza-Michałowska
- Department of Gastronomy Science and Functional Foods, Poznań University of Life Sciences, Poznań, Poland
| | - Krystyna Szymandera-Buszka
- Department of Gastronomy Science and Functional Foods, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
14
|
Microbiological evaluation of 10 commercial probiotic products available in Poland. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2019. [DOI: 10.2478/cipms-2019-0022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The aim of this study was to analyze the quality of 10 commonly available commercial probiotic products used in Poland. These items were tested for the total viable bacterial count, and for identifying the isolated strains. This was performed using the Polymerase Chain Reaction method. The results showed that five of the tested products had not the applicable number of viable bacteria declared by manufacturer. Moreover, not all declared probiotic strains were found in three of the tested products during analyses. It is clear that a regular control of probiotic products needs be introduced that can guarantee its beneficial properties.
Collapse
|
15
|
Vinderola G, Reinheimer J, Salminen S. The enumeration of probiotic issues: From unavailable standardised culture media to a recommended procedure? Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2019.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Abstract
Probiotic bacteria have been used as a health-promoting factor for a very long time. Nowadays, products containing probiotic bacteria are becoming more and more popular on the market. The term probiotics refers to the products belonging to the following groups: probiotic drugs (medicinal products – live biotherapeutic products for human use), medical devices, probiotic foods (e.g. foods, food ingredients, dietary supplements or food for special medical purposes), directly fed microorganisms (for animal use) and designer probiotics (genetically modified probiotics). Safety assessment of bacterial strains used as probiotics should be carefully studied. Even though probiotic bacteria have the generally recognized as safe (GRAS status), there are several reports about side effects triggered by the presence of these organisms. Microorganisms used as probiotics may cause systemic infections, stimulate the immune system, disturb metabolism and participate in horizontal gene transfer.
Collapse
Affiliation(s)
- Anna Zawistowska-Rojek
- Department of Antibiotics and Microbiology, National Medicines Institute, Warsaw, Poland ; Department of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw, Poland
| | - Stefan Tyski
- Department of Antibiotics and Microbiology, National Medicines Institute, Warsaw, Poland ; Department of Pharmaceutical Microbiology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
17
|
Marinova VY, Rasheva IK, Kizheva YK, Dermenzhieva YD, Hristova PK. Microbiological quality of probiotic dietary supplements. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1621208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Viktoria Yonkova Marinova
- Department of General and Industrial Microbiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Iliyana Kirilova Rasheva
- Department of General and Industrial Microbiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Yoana Krasimirova Kizheva
- Department of General and Industrial Microbiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Yordanka Dimitrova Dermenzhieva
- Department of General and Industrial Microbiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Petya Koitcheva Hristova
- Department of General and Industrial Microbiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| |
Collapse
|
18
|
Microbial Preparations (Probiotics) for the Prevention of Clostridium difficile Infection in Adults and Children: An Individual Patient Data Meta-analysis of 6,851 Participants. Infect Control Hosp Epidemiol 2018; 39:771-781. [PMID: 29695312 DOI: 10.1017/ice.2018.84] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVETo determine whether probiotic prophylaxes reduce the odds of Clostridium difficile infection (CDI) in adults and children.DESIGNIndividual participant data (IPD) meta-analysis of randomized controlled trials (RCTs), adjusting for risk factors.METHODSWe searched 6 databases and 11 grey literature sources from inception to April 2016. We identified 32 RCTs (n=8,713); among them, 18 RCTs provided IPD (n=6,851 participants) comparing probiotic prophylaxis to placebo or no treatment (standard care). One reviewer prepared the IPD, and 2 reviewers extracted data, rated study quality, and graded evidence quality.RESULTSProbiotics reduced CDI odds in the unadjusted model (n=6,645; odds ratio [OR] 0.37; 95% confidence interval [CI], 0.25-0.55) and the adjusted model (n=5,074; OR, 0.35; 95% CI, 0.23-0.55). Using 2 or more antibiotics increased the odds of CDI (OR, 2.20; 95% CI, 1.11-4.37), whereas age, sex, hospitalization status, and high-risk antibiotic exposure did not. Adjusted subgroup analyses suggested that, compared to no probiotics, multispecies probiotics were more beneficial than single-species probiotics, as was using probiotics in clinical settings where the CDI risk is ≥5%. Of 18 studies, 14 reported adverse events. In 11 of these 14 studies, the adverse events were retained in the adjusted model. Odds for serious adverse events were similar for both groups in the unadjusted analyses (n=4,990; OR, 1.06; 95% CI, 0.89-1.26) and adjusted analyses (n=4,718; OR, 1.06; 95% CI, 0.89-1.28). Missing outcome data for CDI ranged from 0% to 25.8%. Our analyses were robust to a sensitivity analysis for missingness.CONCLUSIONSModerate quality (ie, certainty) evidence suggests that probiotic prophylaxis may be a useful and safe CDI prevention strategy, particularly among participants taking 2 or more antibiotics and in hospital settings where the risk of CDI is ≥5%.TRIAL REGISTRATIONPROSPERO 2015 identifier: CRD42015015701Infect Control Hosp Epidemiol 2018;771-781.
Collapse
|