1
|
Handford MJ, Bright TE, Mundy P, Lake J, Theis N, Hughes JD. The Need for Eccentric Speed: A Narrative Review of the Effects of Accelerated Eccentric Actions During Resistance-Based Training. Sports Med 2022; 52:2061-2083. [PMID: 35536450 DOI: 10.1007/s40279-022-01686-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2022] [Indexed: 11/26/2022]
Abstract
Eccentric training as a method to enhance athletic performance is a topic of increasing interest to both practitioners and researchers. However, data regarding the effects of performing the eccentric actions of an exercise at increased velocities are limited. This narrative review aimed to provide greater clarity for eccentric methods and classification with regard to temporal phases of exercises. Between March and April 2021, we used key terms to search the PubMed, SPORTDiscus, and Google Scholar databases within the years 1950-2021. Search terms included 'fast eccentric', 'fast velocity eccentric', 'dynamic eccentric', 'accentuated eccentric loading', and 'isokinetic eccentric', analysing both the acute and the chronic effects of accelerated eccentric training in human participants. Review of the 26 studies that met the inclusion criteria identified that completing eccentric tempos of < 2 s increased subsequent concentric one repetition maximum performance, velocity, and power compared with > 4 s tempos. Tempos of > 4 s duration increased time under tension (TUT), whereas reduced tempos allowed for greater volume to be completed. Greater TUT led to larger accumulation of blood lactate, growth hormone, and testosterone when volume was matched to that of the reduced tempos. Overall, evidence supports eccentric actions of < 2 s duration to improve subsequent concentric performance. There is no clear difference between using eccentric tempos of 2-6 s if the aim is to increase hypertrophic response and strength. Future research should analyse the performance of eccentric actions at greater velocities or reduced time durations to determine more factors such as strength response. Tempo studies should aim to complete the same TUT for protocols to determine measures for hypertrophic response.
Collapse
Affiliation(s)
- Matthew J Handford
- School of Sport and Exercise, University of Gloucestershire, Gloucester, UK.
| | - Thomas E Bright
- School of Sport and Exercise, University of Gloucestershire, Gloucester, UK
- School of Sport, Health and Wellbeing, Plymouth Marjon University, Plymouth, UK
| | - Peter Mundy
- Faculty of Health and Life Sciences, Coventry University, Coventry, UK
| | - Jason Lake
- Chichester Institute of Sport, Nursing, and Allied Health, University of Chichester, Chichester, UK
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Nicola Theis
- School of Sport and Exercise, University of Gloucestershire, Gloucester, UK
| | - Jonathan D Hughes
- School of Sport and Exercise, University of Gloucestershire, Gloucester, UK
| |
Collapse
|
2
|
Effects of resistance training on hypertrophy, strength and tensiomyography parameters of elbow flexors: role of eccentric phase duration. Biol Sport 2021; 38:587-594. [PMID: 34937968 PMCID: PMC8670796 DOI: 10.5114/biolsport.2021.99323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/19/2020] [Accepted: 08/31/2020] [Indexed: 11/29/2022] Open
Abstract
The aim of the study was to compare the effects of two different training protocols, which differ in the duration of the eccentric phase, on the one-repetition maximum (1RM), thickness and contractile properties of elbow flexors. Twenty untrained college students were randomly divided into two experimental groups, based on the training tempo: FEG (Faster Eccentric Group: 1/0/1/0) and SEG (Slower Eccentric Group: 4/0/1/0). Training intervention was a biceps bending exercise, conducted twice a week for 7 weeks. The intensity (60–70% RM), sets (3–4) and rest intervals (120 s) were held constant, while repetitions were performed until it was not possible to maintain a set duration. In the initial and final measurements, 1RM, muscle thickness and tensiomyography parameters – contraction time (Tc) and radial deformation (Dm) – were evaluated. An ANCOVA model (using baseline outcomes as covariates) was applied to determine between-group differences at post-test, while Pearson’s product-moment correlation coefficient was used to investigate the relationship between absolute changes in muscle thickness and Dm. Muscle strength increase was greater for SEG than for FEG (6.0 ± 1.76 vs. 3.30 ± 2.26 kg, p < 0.01). In both groups muscle thickness increased equally (FEG: 3.24 ± 2.01 vs. SEG: 3.57 ± 1.17 mm, p < 0.01), while an overall reduction in Dm was observed (FEG: 1.99 ± 1.20 vs. SEG: 2.26 ± 1.03 mm, p < 0.01). Values of Tc remained unchanged. A significant negative relationship was observed between changes in muscle thickness and Dm (r = -0.763, Adj.R² = 0.560, p < 0.01). These results indicate that the duration of the eccentric phase has no effect on muscle hypertrophy in untrained subjects, but that slower eccentric movement significantly increases 1RM.
Collapse
|
3
|
Wilk M, Tufano JJ, Zajac A. The Influence of Movement Tempo on Acute Neuromuscular, Hormonal, and Mechanical Responses to Resistance Exercise-A Mini Review. J Strength Cond Res 2020; 34:2369-2383. [PMID: 32735429 DOI: 10.1519/jsc.0000000000003636] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Wilk, M, Tufano, JJ, and Zajac, A. The influence of movement tempo on acute neuromuscular, hormonal, and mechanical responses to resistance exercise-a mini review. J Strength Cond Res 34(8): 2369-2383, 2020-Resistance training studies mainly analyze variables such as the type and order of exercise, intensity, number of sets, number of repetitions, and duration and frequency of rest periods. However, one variable that is often overlooked in resistance training research, as well as in practice, is premeditated movement tempo, which can influence a myriad of mechanical and physiological factors associated with training and adaptation. Specifically, this article provides an overview of the available scientific literature and describes how slower tempos negatively affect the 1-repetition maximum, the possible load to be used, and the number of repetitions performed with a given load, while also increasing the total time under tension, which can mediate acute cardiovascular and hormonal responses. As a result, coaches should consider testing maximal strength and the maximal number of repetitions that can be performed with each movement tempo that is to be used during training. Otherwise, programming resistance training using various movement tempos is more of a trial-and-error approach, rather than being evidence or practice based. Furthermore, practical applications are provided to show how movement tempo can be adjusted for a variety of case study-type scenarios.
Collapse
Affiliation(s)
- Michal Wilk
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Poland; and
| | - James J Tufano
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Adam Zajac
- Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Poland; and
| |
Collapse
|
4
|
Oranchuk DJ, Storey AG, Nelson AR, Cronin JB. Scientific Basis for Eccentric Quasi-Isometric Resistance Training: A Narrative Review. J Strength Cond Res 2020; 33:2846-2859. [PMID: 31361732 DOI: 10.1519/jsc.0000000000003291] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Oranchuk, DJ, Storey, AG, Nelson, AR, and Cronin, JB. The scientific basis for eccentric quasi-isometric resistance training: A narrative review. J Strength Cond Res 33(10): 2846-2859, 2019-Eccentric quasi-isometric (EQI) resistance training involves holding a submaximal, yielding isometric contraction until fatigue causes muscle lengthening and then maximally resisting through a range of motion. Practitioners contend that EQI contractions are a powerful tool for the development of several physical qualities important to health and sports performance. In addition, several sports involve regular quasi-isometric contractions for optimal performance. Therefore, the primary objective of this review was to synthesize and critically analyze relevant biological, physiological, and biomechanical research and develop a rationale for the value of EQI training. In addition, this review offers potential practical applications and highlights future areas of research. Although there is a paucity of research investigating EQIs, the literature on responses to traditional contraction types is vast. Based on the relevant literature, EQIs may provide a practical means of increasing total volume, metabolite build-up, and hormonal signaling factors while safely enduring large quantities of mechanical tension with low levels of peak torque. Conversely, EQI contractions likely hold little neuromuscular specificity to high velocity or power movements. Therefore, EQI training seems to be effective for improving musculotendinous morphological and performance variables with low injury risk. Although speculative due to the limited specific literature, available evidence suggests a case for future experimentation.
Collapse
Affiliation(s)
- Dustin J Oranchuk
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Adam G Storey
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - André R Nelson
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - John B Cronin
- Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand.,School of Health and Medical Science, Edith Cowan University, Perth, Australia
| |
Collapse
|
5
|
Acute effects of whole body vibration combined with blood restriction on electromyography amplitude and hormonal responses. Biol Sport 2018; 35:301-307. [PMID: 30449948 PMCID: PMC6224844 DOI: 10.5114/biolsport.2018.77830] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 06/29/2017] [Accepted: 02/27/2018] [Indexed: 01/09/2023] Open
Abstract
The purpose of this study was to investigate the effects of whole body vibration (WBV) exercise with and without blood flow restriction (BFR) on electromyography (EMG) amplitude and hormonal responses. Eight healthy male adults who lacked physical activity participated in this study and completed 10 sets of WBV and WBV + BFR sessions in a repeated measures crossover design. In the WBV + BFR session, the participants wore a BFR device inflated to 140 mmHg around the proximal region of the thigh muscles. The results indicated that the EMG values from the rectus femoris and vastus lateralis during the WBV + BFR session were significantly higher than those during the WBV session (p < 0.05). Two-way analysis of variance with repeated measures showed that the WBV + BFR and WBV exercise sessions induced a significant (simple main effect for time) increase in lactate (LA) (0.61–4.68 vs. 0.46–3.44 mmol/L) and growth hormone (GH) (0.48–3.85 vs. 0.47–0.82 ng/mL) responses after some of the post-exercise time points (p < 0.05). WBV + BFR elicited significantly higher LA and GH (simple main effect for trial) responses than did WBV after exercise (p < 0.05). Although no significant time × trial interactions were observed for testosterone (T) (604.5–677.75 vs. 545.75–593.88 ng/dL), main effects for trial (p < 0.05) and for time (p < 0.05) were observed. In conclusion, WBV + BFR produced an additive effect of exercise on EMG amplitude and LA and GH responses, but it did not further induce T responses compared to those with WBV alone.
Collapse
|
6
|
Fujioka R, Mochizuki N, Ikeda M, Sato A, Nomura S, Owada S, Yomoda S, Tsuchihara K, Kishino S, Esumi H. Change in plasma lactate concentration during arctigenin administration in a phase I clinical trial in patients with gemcitabine-refractory pancreatic cancer. PLoS One 2018; 13:e0198219. [PMID: 29856804 PMCID: PMC5983509 DOI: 10.1371/journal.pone.0198219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/15/2018] [Indexed: 01/09/2023] Open
Abstract
Arctigenin is evaluated for antitumor efficacy in patients with pancreatic cancer. It has an inhibitory activity on mitochondrial complex I.Therefore, plasma lactate level of patients after arctigenin administration was evaluated for biomarker of clinical response and/or adverse effect. Plasma lactate level in 15 patients enrolled in a Phase I clinical trial of GBS-01 rich in arctigenin was analyzed by colorimetric assay. Statistical analyses for association of plasma lactate and clinical responses, pharmacokinetics of arctigenin, and background factors of each patient by multivariate and univariate analyses.In about half of the patients, transient increase of lactate was observed. Correlation between plasma lactate level and pharmacokinetic parameters of arctigenin and its glucuronide conjugate, and clinical outcome was not detected. Regarding to the determinant of lactate level, only slight association with liver function test was detected. Plasma lactate level is primary determined by reutilization rather than production for antitumor effect and dose not serve as a biomarker. Arctigenin, inhibition of mitochondrial complex I, plasma lactate concentration, phase I clinical trial of GBS-01, Cori cycle.
Collapse
MESH Headings
- Antineoplastic Agents, Phytogenic/pharmacokinetics
- Antineoplastic Agents, Phytogenic/therapeutic use
- Arctium/chemistry
- Area Under Curve
- Biomarkers/blood
- Carcinoma, Adenosquamous/blood
- Carcinoma, Adenosquamous/drug therapy
- Carcinoma, Pancreatic Ductal/blood
- Carcinoma, Pancreatic Ductal/drug therapy
- Cell Line, Tumor
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Drug Resistance, Neoplasm
- Drug Screening Assays, Antitumor
- Drugs, Chinese Herbal/pharmacokinetics
- Drugs, Chinese Herbal/therapeutic use
- Furans/pharmacokinetics
- Furans/therapeutic use
- Gluconeogenesis/drug effects
- Humans
- Kaplan-Meier Estimate
- Kidney/physiopathology
- Lactic Acid/blood
- Lignans/pharmacokinetics
- Lignans/therapeutic use
- Liver/physiopathology
- Mitochondria/drug effects
- Oxidative Phosphorylation/drug effects
- Pancreatic Neoplasms/blood
- Pancreatic Neoplasms/drug therapy
- Plant Extracts/therapeutic use
- Gemcitabine
Collapse
Affiliation(s)
- Rumi Fujioka
- Division of Translational Research, Exploratory Oncology and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Nobuo Mochizuki
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Tokyo, Japan
| | - Masafumi Ikeda
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center, Hospital East, Kashiwa, Japan
| | - Akihiro Sato
- Clinical Research Support Office, National Cancer Center Hospital East, Kashiwa, Japan
| | - Shogo Nomura
- Biostatistics Division, Center for Research Administration and Support, National Cancer Center, Kashiwa, Japan
| | - Satoshi Owada
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Satoshi Yomoda
- Kanpo Research Institute, Kracie Pharmaceutical Company, Toyama, Japan
| | - Katsuya Tsuchihara
- Division of Translational Research, Exploratory Oncology and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Satoshi Kishino
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, Tokyo, Japan
| | - Hiroyasu Esumi
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
- * E-mail:
| |
Collapse
|
7
|
Douglas J, Pearson S, Ross A, McGuigan M. Eccentric Exercise: Physiological Characteristics and Acute Responses. Sports Med 2016; 47:663-675. [DOI: 10.1007/s40279-016-0624-8] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|