1
|
Kim YK, Lee H, Ismail T, Kim Y, Lee HS. Dach1 regulates neural crest migration during embryonic development. Biochem Biophys Res Commun 2020; 527:896-901. [PMID: 32430182 DOI: 10.1016/j.bbrc.2020.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/02/2020] [Indexed: 02/06/2023]
Abstract
Dachshund 1(Dach1) is a key component of the retinal determination gene network that plays significant roles in cell fate regulation. The vertebrate homolog of Drosophila dachshund has gained considerable importance as an essential regulator of development, but its functions during embryonic development remain elusive. We investigated the functional significance of dach1 during Xenopus embryogenesis using loss-of-function studies. Reverse transcription-polymerase chain reaction demonstrated the maternal nature of dach1, showing enhanced expression at the neurula stage of development, and morpholino oligonucleotide injection of dach1 induced phenotypic anomalies of microcephaly and reduced body length. Animal cap assays followed by whole-mount in-situ hybridization indicated the perturbed expression of neural and neural crest (NC) markers. Our data suggest the prerequisite functions of dach1 in NC migration during Xenopus embryogenesis. However, the developmental pathways regulated by dach1 during embryogenesis require further elucidation.
Collapse
Affiliation(s)
- Yoo-Kyung Kim
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Hongchan Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Tayaba Ismail
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Youni Kim
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Hyun-Shik Lee
- KNU-Center for Nonlinear Dynamics, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
2
|
Lee HK, Ismail T, Kim C, Kim Y, Park JW, Kwon OS, Kang BS, Lee DS, Kwon T, Park TJ, Lee HS. Lysine demethylase 3a in craniofacial and neural development during Xenopus embryogenesis. Int J Mol Med 2018; 43:1105-1113. [PMID: 30569092 DOI: 10.3892/ijmm.2018.4024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/05/2018] [Indexed: 11/05/2022] Open
Abstract
Epigenetic modifier lysine demethylase 3a (Kdm3a) specifically demethylates mono‑ and di‑methylated ninth lysine of histone 3 and belongs to the Jumonji domain‑containing group of demethylases. Kdm3a serves roles during various biological and pathophysiological processes, including spermatogenesis and metabolism, determination of sex, androgen receptor‑mediated transcription and embryonic carcinoma cell differentiation. In the present study, physiological functions of Kdm3a were evaluated during embryogenesis of Xenopus laevis. Spatiotemporal expression pattern indicated that kdm3a exhibited its expression from early embryonic stages until tadpole stage, however considerable increase of kdm3a expression was observed during the neurula stage of Xenopus development. Depleting kdm3a using kdm3a antisense morpholino oligonucleotides induced anomalies, including head deformities, small‑sized eyes and abnormal pigmentation. Whole‑mount in situ hybridization results demonstrated that kdm3a knockdown was associated with defects in neural crest migration. Further, quantitative polymerase chain reaction revealed abnormal expression of neural markers in kdm3a morphants. RNA sequencing of kdm3a morphants indicated that kdm3a was implicated in mesoderm formation, cell adhesion and metabolic processes of embryonic development. In conclusion, the results of the present study indicated that Kdm3a may serve a role in neural development during Xenopus embryogenesis and may be targeted for treatment of developmental disorders. Further investigation is required to elucidate the molecular mechanism underlying the regulation of neural development by Kdm3a.
Collapse
Affiliation(s)
- Hyun-Kyung Lee
- Cell and Matrix Research Institute, Kyungpook National University‑Center for Nonlinear Dynamics, School of Life Sciences, Brain Korea 21 Plus Kyungpook National University Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Tayaba Ismail
- Cell and Matrix Research Institute, Kyungpook National University‑Center for Nonlinear Dynamics, School of Life Sciences, Brain Korea 21 Plus Kyungpook National University Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Chowon Kim
- Cell and Matrix Research Institute, Kyungpook National University‑Center for Nonlinear Dynamics, School of Life Sciences, Brain Korea 21 Plus Kyungpook National University Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Youni Kim
- Cell and Matrix Research Institute, Kyungpook National University‑Center for Nonlinear Dynamics, School of Life Sciences, Brain Korea 21 Plus Kyungpook National University Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jeen-Woo Park
- Cell and Matrix Research Institute, Kyungpook National University‑Center for Nonlinear Dynamics, School of Life Sciences, Brain Korea 21 Plus Kyungpook National University Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Oh-Shin Kwon
- Cell and Matrix Research Institute, Kyungpook National University‑Center for Nonlinear Dynamics, School of Life Sciences, Brain Korea 21 Plus Kyungpook National University Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Beom-Sik Kang
- Cell and Matrix Research Institute, Kyungpook National University‑Center for Nonlinear Dynamics, School of Life Sciences, Brain Korea 21 Plus Kyungpook National University Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong-Seok Lee
- Cell and Matrix Research Institute, Kyungpook National University‑Center for Nonlinear Dynamics, School of Life Sciences, Brain Korea 21 Plus Kyungpook National University Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Taejoon Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Tae Joo Park
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Hyun-Shik Lee
- Cell and Matrix Research Institute, Kyungpook National University‑Center for Nonlinear Dynamics, School of Life Sciences, Brain Korea 21 Plus Kyungpook National University Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|