1
|
Firouzan B, Iravanpour F, Abbaszadeh F, Akparov V, Zaringhalam J, Ghasemi R, Maghsoudi N. Dipeptide mimetic of BDNF ameliorates motor dysfunction and striatal apoptosis in 6-OHDA-induced Parkinson's rat model: Considering Akt and MAPKs signaling. Behav Brain Res 2023; 452:114585. [PMID: 37467964 DOI: 10.1016/j.bbr.2023.114585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
Parkinson's disease (PD) is a progressive and debilitating neurodegenerative disorder associated with motor and non-motor complaints. Dysregulation of neurotrophic factors and related signaling cascades have been reported to be common events in PD which is accompanied by dopaminergic (DA) neuron demise. However, the restoration of neurotrophic factors has several limitations. Bis-(N-monosuccinyl-L-methionyl-L-serine) heptamethylenediamide (BHME) is a dipeptide mimetic of brain-derived neurotrophic factor (BDNF) with reported anti-oxidant and neuroprotective effects in several experimental models. The current study has investigated the effect of BHME on 6-hydroxydopamine (6-OHDA)-caused motor anomalies in Wistar rats. In this regard, rats were treated daily with BHME (0.1 or 1 mg/kg) 1 h after 6-OHDA-caused damage until the twelfth day. Afterwards, motor behavior and DA neuron survival were evaluated via behavioral tests and immunohistochemistry (IHC) staining, respectively. Moreover, the activity of Akt, mitogen-activated protein kinases (MAPKs) family, and Bax/Bcl-2 ratio were evaluated by Western blotting. Our results indicated that BHME prevents motor dysfunction and DA cell death following 6-OHDA injection, and this improvement was in parallel with an enhancement in Akt activity, decrement of P38 phosphorylation, along with a reduction in Bax/Bcl-2 ratio. In conclusion, our findings indicated that BHME, as a mimetic of BDNF, can be considered for further research and is a promising therapeutic agent for PD therapy.
Collapse
Affiliation(s)
- Bita Firouzan
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farideh Iravanpour
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Abbaszadeh
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Valery Akparov
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalal Zaringhalam
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ghasemi
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nader Maghsoudi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
García-Revilla J, Herrera AJ, de Pablos RM, Venero JL. Inflammatory Animal Models of Parkinson’s Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S165-S182. [PMID: 35662128 PMCID: PMC9535574 DOI: 10.3233/jpd-213138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Accumulating evidence suggests that microglia and peripheral immune cells may play determinant roles in the pathogenesis of Parkinson’s disease (PD). Consequently, there is a need to take advantage of immune-related models of PD to study the potential contribution of microglia and peripheral immune cells to the degeneration of the nigrostriatal system and help develop potential therapies for PD. In this review, we have summarised the main PD immune models. From a historical perspective, we highlight first the main features of intranigral injections of different pro-inflammogens, including lipopolysaccharide (LPS), thrombin, neuromelanin, etc. The use of adenoviral vectors to promote microglia-specific overexpression of different molecules in the ventral mesencephalon, including α-synuclein, IL-1β, and TNF, are also presented and briefly discussed. Finally, we summarise different models associated with peripheral inflammation whose contribution to the pathogenesis of neurodegenerative diseases is now an outstanding question. Illustrative examples included systemic LPS administration and dextran sulfate sodium-induced colitis in rodents.
Collapse
Affiliation(s)
- Juan García-Revilla
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Antonio J. Herrera
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Rocío M. de Pablos
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - José Luis Venero
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| |
Collapse
|
3
|
Tran AA, De Smet M, Grant GD, Khoo TK, Pountney DL. Investigating the Convergent Mechanisms between Major Depressive Disorder and Parkinson's Disease. Complex Psychiatry 2021; 6:47-61. [PMID: 34883500 DOI: 10.1159/000512657] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/23/2020] [Indexed: 12/21/2022] Open
Abstract
Major depressive disorder (MDD) affects more than cognition, having a temporal relationship with neuroinflammatory pathways of Parkinson's disease (PD). Although this association is supported by epidemiological and clinical studies, the underlying mechanisms are unclear. Microglia and astrocytes play crucial roles in the pathophysiology of both MDD and PD. In PD, these cells can be activated by misfolded forms of the protein α-synuclein to release cytokines that can interact with multiple different physiological processes to produce depressive symptoms, including monoamine transport and availability, the hypothalamus-pituitary axis, and neurogenesis. In MDD, glial cell activation can be induced by peripheral inflammatory agents that cross the blood-brain barrier and/or c-Fos signalling from neurons. The resulting neuroinflammation can cause neurodegeneration due to oxidative stress and glutamate excitotoxicity, contributing to PD pathology. Astrocytes are another major link due to their recognized role in the glymphatic clearance mechanism. Research suggesting that MDD causes astrocytic destruction or structural atrophy highlights the possibility that accumulation of α-synuclein in the brain is facilitated as the brain cannot adequately clear the protein aggregates. This review examines research into the overlapping pathophysiology of MDD and PD with particular focus on the roles of glial cells and neuroinflammation.
Collapse
Affiliation(s)
- Angela A Tran
- School of Medical Science, Griffith University, Southport, Queensland, Australia.,School of Medicine, Griffith University, Southport, Queensland, Australia
| | - Myra De Smet
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Gary D Grant
- School of Pharmacy and Pharmacology, Griffith University, Southport, Queensland, Australia
| | - Tien K Khoo
- School of Medicine, Griffith University, Southport, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia.,School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
| | - Dean L Pountney
- School of Medical Science, Griffith University, Southport, Queensland, Australia
| |
Collapse
|
4
|
Bongioanni P, Del Carratore R, Corbianco S, Diana A, Cavallini G, Masciandaro SM, Dini M, Buizza R. Climate change and neurodegenerative diseases. ENVIRONMENTAL RESEARCH 2021; 201:111511. [PMID: 34126048 DOI: 10.1016/j.envres.2021.111511] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/25/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
The climate change induced global warming, and in particular the increased frequency and intensity of heat waves, have been linked to health problems. Among them, scientific works have been reporting an increased incidence of neurological diseases, encompassing also neurodegenerative ones, such as Dementia of Alzheimer's type, Parkinson's Disease, and Motor Neuron Diseases. Although the increase in prevalence of neurodegenerative diseases is well documented by literature reports, the link between global warming and the enhanced prevalence of such diseases remains elusive. This is the main theme of our work, which aims to examine the connection between high temperature exposure and neurodegenerative diseases. Firstly, we evaluate the influence of high temperatures exposure on the pathophysiology of these disorders. Secondly, we discuss its effects on the thermoregulation, already compromised in affected patients, and its interference with processes of excitotoxicity, oxidative stress and neuroinflammation, all of them related with neurodegeneration. Finally, we investigate chronic versus acute stressors on body warming, and put forward a possible interpretation of the beneficial or detrimental effects on the brain, which is responsible for the incidence or progression of neurological disorders.
Collapse
Affiliation(s)
- Paolo Bongioanni
- Severe Acquired Brain Injuries Dpt Section, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy; NeuroCare Onlus, Pisa, Italy
| | | | - Silvia Corbianco
- Interdepartmental Research Centre on Biology and Pathology of Aging, University of Pisa, Italy; Human Movement and Rehabilitation Research Laboratory, Pisa, Italy
| | - Andrea Diana
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Gabriella Cavallini
- Interdepartmental Research Centre on Biology and Pathology of Aging, University of Pisa, Italy
| | - Silvia M Masciandaro
- NeuroCare Onlus, Pisa, Italy; Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Marco Dini
- Interdepartmental Research Centre on Biology and Pathology of Aging, University of Pisa, Italy; Human Movement and Rehabilitation Research Laboratory, Pisa, Italy
| | - Roberto Buizza
- Scuola Superiore Sant'Anna and Centre for Climate Change Studies and Sustainable Actions (3CSA), Pisa, Italy
| |
Collapse
|
5
|
Schlichtmann BW, Hepker M, Palanisamy BN, John M, Anantharam V, Kanthasamy AG, Narasimhan B, Mallapragada SK. NANOTECHNOLOGY-MEDIATED THERAPEUTIC STRATEGIES AGAINST SYNUCLEINOPATHIES IN NEURODEGENERATIVE DISEASE. Curr Opin Chem Eng 2021; 31:100673. [PMID: 35419254 PMCID: PMC9004679 DOI: 10.1016/j.coche.2021.100673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Synucleinopathies are a subset of debilitating neurodegenerative disorders for which clinically approved therapeutic options to either halt or retard disease progression are currently unavailable. Multiple synergistic pathological mechanisms in combination with the characteristic misfolding of proteins are attributable to disease pathogenesis and progression. This complex interplay, as well as the difficult and multiscale nature of therapeutic delivery into the central nervous system, make finding effective treatments difficult. Nanocarriers (NCs) are a class of materials that can significantly improve therapeutic brain delivery and enable multifunctional therapies. In this review, an update on the known pathology of synucleinopathies is presented. Then, NC-enabled therapeutics designed to target the multiple mechanisms by combination therapies and multiscale targeting methods is reviewed. The implications of these strategies are synthesized and evaluated to suggest opportunities for the rational design of anti-neurodegenerative NC therapeutics.
Collapse
Affiliation(s)
- Benjamin W Schlichtmann
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011
- Nanovaccine Institute, Ames, Iowa 50011
| | - Monica Hepker
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011
| | | | - Manohar John
- PathoVacs, Incorporated, Ames, Iowa 50011
- Nanovaccine Institute, Ames, Iowa 50011
| | | | - Anumantha G Kanthasamy
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011
- Nanovaccine Institute, Ames, Iowa 50011
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011
- Nanovaccine Institute, Ames, Iowa 50011
| | - Surya K Mallapragada
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011
- Nanovaccine Institute, Ames, Iowa 50011
| |
Collapse
|
6
|
Chang JF, Liu HC, Chen H, Chen WP, Juang JL, Wang PN, Yang SY. Effect of Times to Blood Processing on the Stability of Blood Proteins Associated with Dementia. Dement Geriatr Cogn Disord 2020; 49:303-311. [PMID: 32784295 PMCID: PMC9677837 DOI: 10.1159/000509358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/09/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The stability of proteins in the collecting tubes after blood draw is critical to the measured concentrations of the proteins. Although the guidelines issued by the Clinical and Laboratory Standards Institute (CLSI) suggest centrifugation should take place within 2 h of drawing blood, it is very difficult to follow these guidelines in hospitals or clinics. It is necessary to study the effect of times to blood processing on the stability of the proteins of interest. METHODS In this work, the plasma proteins of interest were those relevant to dementia, such as amyloid β 1-40 (Aβ1-40), Aβ1-42, Tau protein (Tau), and α-synuclein. The times to blood processing after blood draw ranged from 0.5 to 8 h. The storage temperatures of blood were room temperature (approx. 25°C) and 30°C. After storage, blood samples were centrifuged at room temperature to obtain plasma samples. Ultrasensitive immunomagnetic reduction was applied to assay these proteins in the plasma. RESULTS The levels of plasma Aβ1-40, Tau, and α-synuclein did not significantly change until 8 h after blood draw when stored at room temperature. Plasma Aβ1-42 levels did not change significantly after 8 h of storage at room temperature before blood processing. Higher storage temperatures, such as 30°C, for blood samples accelerated the significant variations in the measured concentrations of Aβ1-40, Tau, and α-synuclein in plasma. CONCLUSION According to these results, for clinical practice, it is suggested that blood samples be stored at room temperature for no longer than 4.5 h after blood draw until centrifugation for the assay of dementia biomarkers in plasma.
Collapse
Affiliation(s)
| | | | - H.H. Chen
- MagQu Co., Ltd., New Taipei City, Taiwan
| | | | | | - Pei-Ning Wang
- Division of General Neurology, Department of Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan,Department of Neurology, School of Medicine, National Yang-Ming University, Taipei, Taiwan,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Shieh-Yueh Yang
- MagQu Co., Ltd., New Taipei City, Taiwan, .,MagQu LLC, Surprise, Arizona, USA,
| |
Collapse
|
7
|
Singh S, Gupta SK, Seth PK. Biomarkers for detection, prognosis and therapeutic assessment of neurological disorders. Rev Neurosci 2018; 29:771-789. [PMID: 29466244 DOI: 10.1515/revneuro-2017-0097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/17/2017] [Indexed: 10/24/2023]
Abstract
Neurological disorders have aroused a significant concern among the health scientists globally, as diseases such as Parkinson's, Alzheimer's and dementia lead to disability and people have to live with them throughout the life. Recent evidence suggests that a number of environmental chemicals such as pesticides (paraquat) and metals (lead and aluminum) are also the cause of these diseases and other neurological disorders. Biomarkers can help in detecting the disorder at the preclinical stage, progression of the disease and key metabolomic alterations permitting identification of potential targets for intervention. A number of biomarkers have been proposed for some neurological disorders based on laboratory and clinical studies. In silico approaches have also been used by some investigators. Yet the ideal biomarker, which can help in early detection and follow-up on treatment and identifying the susceptible populations, is not available. An attempt has therefore been made to review the recent advancements of in silico approaches for discovery of biomarkers and their validation. In silico techniques implemented with multi-omics approaches have potential to provide a fast and accurate approach to identify novel biomarkers.
Collapse
Affiliation(s)
- Sarita Singh
- Distinguished Scientist Laboratory, Biotech Park, Sector-G Jankipram, Kursi Road, Lucknow 226021, Uttar Pradesh, India
| | - Sunil Kumar Gupta
- Distinguished Scientist Laboratory, Biotech Park, Lucknow 226021, Uttar Pradesh, India
| | - Prahlad Kishore Seth
- Distinguished Scientist Laboratory, Biotech Park, Lucknow 226021, Uttar Pradesh, India
| |
Collapse
|
8
|
Zhao H, Zhao J, Hou J, Wang S, Ding Y, Lu B, Wang J. AlphaLISA detection of alpha-synuclein in the cerebrospinal fluid and its potential application in Parkinson's disease diagnosis. Protein Cell 2018; 8:696-700. [PMID: 28555377 PMCID: PMC5563284 DOI: 10.1007/s13238-017-0424-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Hongli Zhao
- State Key Laboratory of Medical Neurobiology, Department of Neurology in Huashan Hospital, School of Life Sciences, National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, 200040, China
| | - Jue Zhao
- State Key Laboratory of Medical Neurobiology, Department of Neurology in Huashan Hospital, School of Life Sciences, National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, 200040, China
| | - Jiapeng Hou
- State Key Laboratory of Medical Neurobiology, Department of Neurology in Huashan Hospital, School of Life Sciences, National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, 200040, China
| | - Siqing Wang
- Changzhou Furuite Biological Technology Co. Ltd., Changzhou, 213145, China
| | - Yu Ding
- State Key Laboratory of Medical Neurobiology, Department of Neurology in Huashan Hospital, School of Life Sciences, National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, 200040, China.
| | - Boxun Lu
- State Key Laboratory of Medical Neurobiology, Department of Neurology in Huashan Hospital, School of Life Sciences, National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, 200040, China.
- Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| | - Jian Wang
- State Key Laboratory of Medical Neurobiology, Department of Neurology in Huashan Hospital, School of Life Sciences, National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
9
|
Khodadadian A, Hemmati-Dinarvand M, Kalantary-Charvadeh A, Ghobadi A, Mazaheri M. Candidate biomarkers for Parkinson's disease. Biomed Pharmacother 2018; 104:699-704. [PMID: 29803930 DOI: 10.1016/j.biopha.2018.05.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/01/2018] [Accepted: 05/07/2018] [Indexed: 10/16/2022] Open
Abstract
Parkinson's disease (PD) is one of the most common diseases associated with neurodegenerative disorders. It affects 3% to 4% of the population over the age of 65 years. The neuropathological dominant symptoms of PD include the destruction of neurons in the substantia nigra, thus causing striatal dopamine deficiency and the presence of intracellular inclusions that contain aggregates of α‑synuclein. The premature form of PD is familial and is known as early onset PD (EOPD). It involves a small portion of patients with PD, displaying symptoms before the age of 60 years. Although individuals who are suffering from the EOPD may have genetic changes, the molecular mechanisms that differentiate between EOPD and late onset PD (LOPD) remain unclear. Owing to the complexity of discriminating between the different forms, treatment, and management of PD, the identification of biomarkers for early diagnosis seems necessary. For this purpose, many studies have been undertaken for the introduction of several biological molecules through various techniques as potential biomarkers. The main focus of these studies was on α-synuclein. However, there are other molecules that are potential biomarkers, such as microRNAs and peptoids. In this article, we tried to review some of these studies.
Collapse
Affiliation(s)
- Ali Khodadadian
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohsen Hemmati-Dinarvand
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ashkan Kalantary-Charvadeh
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Ghobadi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahta Mazaheri
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
10
|
Wood PL, Tippireddy S, Feriante J, Woltjer RL. Augmented frontal cortex diacylglycerol levels in Parkinson's disease and Lewy Body Disease. PLoS One 2018. [PMID: 29513680 PMCID: PMC5841652 DOI: 10.1371/journal.pone.0191815] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Research from our laboratory, and that of other investigators, has demonstrated augmented levels of diacylglycerols (DAG) in the frontal cortex and plasma of subjects with Alzheimer’s disease (AD) and Mild Cognitive Impairment (MCI). We have extended these observations to investigate the frontal cortex of subjects with Parkinson’s disease (PD) and Lewy Body Disease (LBD), with and without coexisting pathologic features of AD. Methods/Principal findings Utilizing a high-resolution mass spectrometry analytical platform, we clearly demonstrate that DAG levels are significantly increased in the frontal cortex of subjects with PD, LBD with intermediate neocortical AD neuropathology, and in LBD with established neocortical AD neuropathology. In the case of the PD cohort, increases in cortical DAG levels were detected in cases with no neocortical pathology but were greater in subjects with neocortical pathology. These data suggest that DAG changes occur early in the disease processes and are amplified as cortical dysfunction becomes more established. Conclusions These findings suggest that altered DAG synthesis/metabolism is a common feature of neurodegenerative diseases, characterized by proteinopathy, that ultimately result in cognitive deficits. With regard to the mechanism responsible for these biochemical alterations, selective decrements in cortical levels of phosphatidylcholines in LBD and PD suggest that augmented degradation and/or decreased synthesis of these structural glycerophospholipids may contribute to increases in the pool size of free DAGs. The observed augmentation of DAG levels may be phospholipase-driven since neuroinflammation is a consistent feature of all disease cohorts. If this conclusion can be validated it would support utilizing DAG levels as a biomarker of the early disease process and the investigation of early intervention with anti-inflammatory agents.
Collapse
Affiliation(s)
- Paul L. Wood
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, Cumberland Gap Pkwy., Harrogate, TN, United States of America
- * E-mail:
| | - Soumya Tippireddy
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Cumberland Gap Pkwy., Harrogate, TN, United States of America
| | - Joshua Feriante
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Cumberland Gap Pkwy., Harrogate, TN, United States of America
| | - Randall L. Woltjer
- Department of Neurology, Oregon Health Science University and Portland VA Medical Center, Portland, OR, United States of America
| |
Collapse
|
11
|
Abstract
A neurodegenerative disorder displaying an altered α-synuclein (αS) in the brain tissue is called α-synucleinopathy (αS-pathy) and incorporates clinical entities such as Parkinson disease (PD), PD with dementia, dementia with Lewy bodies, and multiple-system atrophy. Neuroradiologic techniques visualizing αS pathology in the brain or assays of αS in the cerebrospinal fluid or blood are probably available and will be implemented in the near future but currently the definite diagnosis of αS-pathy relies on a postmortem examination of the brain. Since the 1980s immunohistochemical technique based on the use of antibodies directed to proteins of interest has become a method of choice for neuropathologic diagnosis. Furthermore, since the 1990s it has been acknowledged that progressions of most neurodegenerative pathologies follow a certain predictable time-related neuroanatomic distribution. Currently, for Lewy body disease, two staging techniques are commonly used: McKeith and Braak staging. Thus, the neuropathologic diagnosis of a αS-pathy is based on detection of altered αS in the tissue and registration of the neuroanatomic distribution of this alteration in the brain. The clinicopathologic correlation is not absolute due to the quite frequent observation of incidental and concomitant αS pathology.
Collapse
Affiliation(s)
- Irina Alafuzoff
- Department of Immunology, Genetics and Pathology, Uppsala University, Department of Pathology, Uppsala University Hospital and Rudbeck Laboratory, Uppsala, Sweden.
| | - Päivi Hartikainen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
12
|
Cao XY, Lu JM, Zhao ZQ, Li MC, Lu T, An XS, Xue LJ. MicroRNA biomarkers of Parkinson's disease in serum exosome-like microvesicles. Neurosci Lett 2017; 644:94-99. [PMID: 28223160 DOI: 10.1016/j.neulet.2017.02.045] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 02/04/2017] [Accepted: 02/16/2017] [Indexed: 02/02/2023]
Abstract
Parkinson's disease (PD) is a progressive age-related debilitating motor disorder and the second most common neurodegenerative disease after Alzheimer's disease. In this study, we aimed to investigate the expression of 24 candidate miRNAs in PD and to assess their diagnostic value in patients with PD. We collected serum samples from 109 patients with PD and 40 age- and sex-matched healthy volunteers (control group). RNAs encapsulated in exosome-like microvesicles in serum were extracted and reverse transcribed. Serum miRNAs were analyzed by quantitative reverse transcription polymerase chain reaction (qRT-PCR), and the ability of the miRNAs to accurately discriminate PD was analyzed by receiver operating characteristic curves. Based on our analysis, we further validated the downregulation of miR-19b and the upregulation of miR-195 and miR-24 in patients with PD. When compared with the control group, the area under the curve (AUC) values for miR-19b, miR-24, and miR-195 were 0.753, 0.908, and 0.697, respectively. Therefore, analysis of the expression levels of miR-19b, miR-24, and miR-195 in serum may be useful for the diagnosis of PD.
Collapse
Affiliation(s)
- Xiang-Yang Cao
- Department of Neurology, Huai'an Hospital Affiliated to Xuzhou Medical University, 62 Huaihan South Road, Huai'an, Jiangsu, 223002, PR China
| | - Jing-Min Lu
- Department of Neurology, Huai'an Hospital Affiliated to Xuzhou Medical University, 62 Huaihan South Road, Huai'an, Jiangsu, 223002, PR China
| | - Zhi-Qiang Zhao
- Department of Neurology, Huai'an Hospital Affiliated to Xuzhou Medical University, 62 Huaihan South Road, Huai'an, Jiangsu, 223002, PR China
| | - Ming-Chao Li
- Department of Neurology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing West Road, Huai'an, Jiangsu 223300, PR China
| | - Ting Lu
- Department of Neurology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing West Road, Huai'an, Jiangsu 223300, PR China
| | - Xu-Sheng An
- Department of Neurology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing West Road, Huai'an, Jiangsu 223300, PR China
| | - Liu-Jun Xue
- Department of Neurology, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing West Road, Huai'an, Jiangsu 223300, PR China.
| |
Collapse
|
13
|
Yang SY, Chiu MJ, Lin CH, Horng HE, Yang CC, Chieh JJ, Chen HH, Liu BH. Development of an ultra-high sensitive immunoassay with plasma biomarker for differentiating Parkinson disease dementia from Parkinson disease using antibody functionalized magnetic nanoparticles. J Nanobiotechnology 2016; 14:41. [PMID: 27278241 PMCID: PMC4898388 DOI: 10.1186/s12951-016-0198-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/24/2016] [Indexed: 11/10/2022] Open
Abstract
Background It is difficult to discriminate healthy subjects and patients with Parkinson disease (PD) or Parkinson disease dementia (PDD) by assaying plasma α-synuclein because the concentrations of circulating α-synuclein in the blood are almost the same as the low-detection limit using current immunoassays, such as enzyme-linked immunosorbent assay. In this work, an ultra-sensitive immunoassay utilizing immunomagnetic reduction (IMR) is developed. The reagent for IMR consists of magnetic nanoparticles functionalized with antibodies against α-synuclein and dispersed in pH-7.2 phosphate-buffered saline. A high-Tc superconducting-quantum-interference-device (SQUID) alternative-current magnetosusceptometer is used to measure the IMR signal of the reagent due to the association between magnetic nanoparticles and α-synuclein molecules. Results According to the experimental α-synuclein concentration dependent IMR signal, the low-detection limit is 0.3 fg/ml and the dynamic range is 310 pg/ml. The preliminary results show the plasma α-synuclein for PD patients distributes from 6 to 30 fg/ml. For PDD patients, the concentration of plasma α-synuclein varies from 0.1 to 100 pg/ml. Whereas the concentration of plasma α-synuclein for healthy subjects is significantly lower than that of PD patients. Conclusions The ultra-sensitive IMR by utilizing antibody-functionalized magnetic nanoparticles and high-Tc SQUID magnetometer is promising as a method to assay plasma α-synuclein, which is a potential biomarker for discriminating patients with PD or PDD.
Collapse
Affiliation(s)
- Shieh-Yueh Yang
- MagQu Co., Ltd., Xindian District, New Taipei City, 231, Taiwan. .,Institute of Electro-optical Science and Technology, National Taiwan Normal University, Taipei, 116, Taiwan.
| | - Ming-Jang Chiu
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, 100, Taiwan.,Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 100, Taiwan.,Department of Psychology, National Taiwan University, Taipei, 100, Taiwan.,Graduate Institute of Biomedical Engineering and Bioinformatics, National Taiwan University, Taipei, 116, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Herng-Er Horng
- Institute of Electro-optical Science and Technology, National Taiwan Normal University, Taipei, 116, Taiwan
| | - Che-Chuan Yang
- MagQu Co., Ltd., Xindian District, New Taipei City, 231, Taiwan
| | - Jen-Jie Chieh
- Institute of Electro-optical Science and Technology, National Taiwan Normal University, Taipei, 116, Taiwan
| | - Hsin-Hsien Chen
- MagQu Co., Ltd., Xindian District, New Taipei City, 231, Taiwan
| | - Bing-Hsien Liu
- MagQu Co., Ltd., Xindian District, New Taipei City, 231, Taiwan
| |
Collapse
|
14
|
Ji K, Zhao Y, Yu T, Wang Z, Gong H, Yang X, Liu Y, Huang K. Inhibition effects of tanshinone on the aggregation of α-synuclein. Food Funct 2016; 7:409-16. [DOI: 10.1039/c5fo00664c] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bioactive tanshinone compounds inhibit the aggregation of α-synuclein and extend the life span of aC. elegansmodel of Parkinson's disease.
Collapse
Affiliation(s)
- Kaige Ji
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Yudan Zhao
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Tianhong Yu
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Zhuoyi Wang
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Hao Gong
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Xin Yang
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Yang Liu
- Synergy Innovation Center of Biological Peptide Antidiabetics of Hubei Province
- School of Life Science
- Wuchang University of Technology
- Wuhan
- China
| | - Kun Huang
- Tongji School of Pharmacy
- Huazhong University of Science and Technology
- Wuhan
- China
- Center for Biomedicine Research
| |
Collapse
|
15
|
Kim D, Kim YS, Shin DW, Park CS, Kang JH. Harnessing Cerebrospinal Fluid Biomarkers in Clinical Trials for Treating Alzheimer's and Parkinson's Diseases: Potential and Challenges. J Clin Neurol 2016; 12:381-392. [PMID: 27819412 PMCID: PMC5063862 DOI: 10.3988/jcn.2016.12.4.381] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 03/28/2016] [Accepted: 03/29/2016] [Indexed: 01/04/2023] Open
Abstract
No disease-modifying therapies (DMT) for neurodegenerative diseases (NDs) have been established, particularly for Alzheimer's disease (AD) and Parkinson's disease (PD). It is unclear why candidate drugs that successfully demonstrate therapeutic effects in animal models fail to show disease-modifying effects in clinical trials. To overcome this hurdle, patients with homogeneous pathologies should be detected as early as possible. The early detection of AD patients using sufficiently tested biomarkers could demonstrate the potential usefulness of combining biomarkers with clinical measures as a diagnostic tool. Cerebrospinal fluid (CSF) biomarkers for NDs are being incorporated in clinical trials designed with the aim of detecting patients earlier, evaluating target engagement, collecting homogeneous patients, facilitating prevention trials, and testing the potential of surrogate markers relative to clinical measures. In this review we summarize the latest information on CSF biomarkers in NDs, particularly AD and PD, and their use in clinical trials. The large number of issues related to CSF biomarker measurements and applications has resulted in relatively few clinical trials on CSF biomarkers being conducted. However, the available CSF biomarker data obtained in clinical trials support the advantages of incorporating CSF biomarkers in clinical trials, even though the data have mostly been obtained in AD trials. We describe the current issues with and ongoing efforts for the use of CSF biomarkers in clinical trials and the plans to harness CSF biomarkers for the development of DMT and clinical routines. This effort requires nationwide, global, and multidisciplinary efforts in academia, industry, and regulatory agencies to facilitate a new era.
Collapse
Affiliation(s)
- Dana Kim
- Department of Pharmacology and Medicinal Toxicology Research Center, Incheon, Korea.,Hypoxia-Related Diseases Research Center, Inha University School of Medicine, Incheon, Korea
| | - Young Sam Kim
- Department of Thoracic Surgery, Inha University Hospital, Inha University, Incheon, Korea
| | - Dong Wun Shin
- Department of Emergency Medicine, Inje University Ilsan Paik Hospital, Goyang, Korea
| | - Chang Shin Park
- Department of Pharmacology and Medicinal Toxicology Research Center, Incheon, Korea.,Hypoxia-Related Diseases Research Center, Inha University School of Medicine, Incheon, Korea
| | - Ju Hee Kang
- Department of Pharmacology and Medicinal Toxicology Research Center, Incheon, Korea.,Hypoxia-Related Diseases Research Center, Inha University School of Medicine, Incheon, Korea.
| |
Collapse
|