1
|
Lee JY, Kim M, Oh SB, Kim HY, Kim C, Kim TY, Park YH. Superoxide dismutase 3 prevents early stage diabetic retinopathy in streptozotocin-induced diabetic rat model. PLoS One 2022; 17:e0262396. [PMID: 35015779 PMCID: PMC8751990 DOI: 10.1371/journal.pone.0262396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 12/23/2021] [Indexed: 12/16/2022] Open
Abstract
Purpose To identify the effects of superoxide dismutase (SOD)3 on diabetes mellitus (DM)-induced retinal changes in a diabetic rat model. Methods Diabetic models were established by a single intraperitoneal injection of streptozotocin (STZ) in Sprague-Dawley rats. After purification of the recombinant SOD3, intravitreal injection of SOD3 was performed at the time of STZ injection, and 1 and 2 weeks following STZ injection. Scotopic and photopic electroretinography (ERG) were recorded. Immunofluorescence staining with ɑ-smooth muscle actin (SMA), glial fibrillary acidic protein (GFAP), pigment epithelium-derived factor (PEDF), Flt1, recoverin, parvalbumin, extracellular superoxide dismutase (SOD3), 8-Hydroxy-2’deoxyguanosine (8-OHdG) and tumor necrosis factor-ɑ (TNF-ɑ) were evaluated. Results In the scotopic ERG, the diabetic group showed reduced a- and b-wave amplitudes compared with the control group. In the photopic ERG, b-wave amplitude showed significant (p < 0.0005) reduction at 8 weeks following DM induction. However, the trend of a- and b-wave reduction was not evident in the SOD3 treated group. GFAP, Flt1, 8-OHdG and TNF-ɑ immunoreactivity were increased, and ɑ-SMA, PEDF and SOD3 immunoreactivity were decreased in the diabetic retina. The immunoreactivity of these markers was partially recovered in the SOD3 treated group. Parvalbumin expression was not decreased in the SOD3 treated group. In the diabetic retinas, the immunoreactivity of recoverin was weakly detected in both of the inner nuclear layer and inner plexiform layer compared to the control group but not in the SOD3 treated group. Conclusions SOD3 treatment attenuated the loss of a/b-wave amplitudes in the diabetic rats, which was consistent with the immunohistochemical evaluation. We also suggest that in rod-dominant rodents, the use of blue on green photopic negative response (PhNR) is effective in measuring the inner retinal function in animal models of diabetic retinopathy. SOD3 treatment ameliorated the retinal Müller cell activation in diabetic rats and pericyte dysfunction. These results suggested that SOD3 exerted protective effects on the development of diabetic retinopathy.
Collapse
Affiliation(s)
- Ji-Yeon Lee
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Mirinae Kim
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Ophthalmology and Visual Science, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Su Bin Oh
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hae-Young Kim
- Department of Dermatology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chongtae Kim
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Tae-Yoon Kim
- Department of Dermatology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Young-Hoon Park
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Ophthalmology and Visual Science, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
2
|
Rodrigo MJ, Garcia-Herranz D, Aragón-Navas A, Subias M, Martinez-Rincón T, Mendez-Martínez S, Cardiel MJ, García-Feijoo J, Ruberte J, Herrero-Vanrell R, Pablo L, Garcia-Martin E, Bravo-Osuna I. Long-term corticosteroid-induced chronic glaucoma model produced by intracameral injection of dexamethasone-loaded PLGA microspheres. Drug Deliv 2021; 28:2427-2446. [PMID: 34763590 PMCID: PMC8592597 DOI: 10.1080/10717544.2021.1998245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
PURPOSE To evaluate a new chronic glaucoma model produced by intracameral injection of dexamethasone-loaded poly lactic-co-glycolic acid microspheres (Dex-PLGA-Ms) over six months. METHODS Healthy rats received two injections (at baseline and Week 4) of Dex-PLGA-Ms into the anterior chamber of the right eye. Clinical signs and intraocular pressure (IOP) were weekly recorded. The structure of the retina and optic nerve was in vivo evaluated using optical coherence tomography (OCT) every two weeks and functionally using dark- and light-adapted electroretinography at 0-12-24 weeks. Histological studies were also performed. RESULTS IOP progressively increased up to hypertension (23.22 ± 3.63 mmHg) in both eyes but did so later in left eyes. OCT quantified a decrease in full-thickness retina posterior pole (R), retinal-nerve-fiber layer (RNFL), and ganglion-cell layer (GCL) thickness up to 24 weeks. Right eyes showed higher neuroretinal thickness loss up to week 8. RNFL experienced the highest percentage thickness loss at the inferior-superior axis, while in GCL the inner sectors of the horizontal axis (Nasal-Temporal) suffered the greatest decrease in thickness. Retinal ganglion cell, photoreceptor, and intermediate cell functionality decreased over time. Increased deposition of collagen IV was also found in zonular fibers and the ciliary body. CONCLUSIONS This work shows the usefulness of drug delivery systems, not to treat pathology but to induce it. Only two injections of Dex-PLGA-Ms in the anterior chamber of rat eyes were enough to progressively create ocular hypertension and subsequent functional and structural neuroretinal degeneration, at least over 6 months.
Collapse
Affiliation(s)
- M J Rodrigo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain.,Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain.,National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Madrid, Spain
| | - D Garcia-Herranz
- Complutense University of Madrid. Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Spain.,Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - A Aragón-Navas
- Complutense University of Madrid. Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Spain.,Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - M Subias
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain.,Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain
| | - T Martinez-Rincón
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain.,Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain
| | - S Mendez-Martínez
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain.,Miguel Servet Ophthalmology Research Group (GIMSO), University of Zaragoza, Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain
| | - M J Cardiel
- Miguel Servet Ophthalmology Research Group (GIMSO), University of Zaragoza, Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain.,Department of Pathology, Lozano Blesa University Hospital, Zaragoza, Spain
| | - J García-Feijoo
- Complutense University of Madrid. Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415. National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Spain.,Servicio de Oftalmología, Hospital Clínico San Carlos, Madrid, Spain.,Departamento de Inmunología, Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid (UCM), IdISSC, Madrid, Spain
| | - J Ruberte
- Animal Biotechnology and Gene Therapy Centre (CBATEG), Universitat Autònoma de Barcelona, Bellaterra, Spain.,Networked Biomedical Research Centre for Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain.,Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - R Herrero-Vanrell
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Madrid, Spain.,Complutense University of Madrid. Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Spain.,Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - L Pablo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain.,National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Madrid, Spain.,Miguel Servet Ophthalmology Research Group (GIMSO), University of Zaragoza, Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain
| | - E Garcia-Martin
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain.,National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Madrid, Spain.,Miguel Servet Ophthalmology Research Group (GIMSO), University of Zaragoza, Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain
| | - I Bravo-Osuna
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Madrid, Spain.,Complutense University of Madrid. Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Spain.,Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| |
Collapse
|