1
|
Thangwong P, Tocharus C, Tocharus J. The Bidirectional Role of Hypoxia-Inducible Factor 1 Alpha in Vascular Dementia Caused by Chronic Cerebral Hypoperfusion. Mol Neurobiol 2025:10.1007/s12035-025-04914-5. [PMID: 40205304 DOI: 10.1007/s12035-025-04914-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 04/03/2025] [Indexed: 04/11/2025]
Abstract
Chronic cerebral hypoperfusion (CCH) is a critical indicator of cognitive impairment and dementia, especially vascular dementia. Cerebral blood flow disturbance alters the properties of neurons and glial cells as a result of a deficit in energy sources. Hypoxia-inducible factor 1 alpha (HIF- 1α) is a transcription factor that controls gene activity in response to low oxygen levels. It regulates a complex network of cellular adaptations to improve oxygenation, metabolic reprogramming, and cell survival in hypoxic situations. However, recent research suggests that HIF- 1α plays a role not only in neuroprotection but also in brain injury. It is therefore critical to fully comprehend the mechanisms behind these disorders. This review highlights the dual role of HIF- 1α in CCH-induced VaD. Initially, HIF- 1α provides a neuroprotection by promoting angiogenesis through vascular endothelial growth factor (VEGF) signaling. However, prolonged activation can detrimentally effects, including oxidative stress, neuroinflammation, blood-brain barrier dysfunction, and cognitive impairment. Evidence suggests that HIF- 1α exerts its protective effects in acute ischemic/hypoxic-induced VaD through pathways such as PI3 K/AKT/mTOR and MAPK/p-c-Jun signaling. However, its dysregulation in chronic stages of CCH contributes to cognitive decline and disease progression. Understanding the complex role of HIF- 1α and its interactions with other molecular pathways is crucial for developing effective therapeutic strategies. Therefore, an informed, in-depth discussion of its involvement in these pathologic processes is necessary, as a precise contribution of HIF- 1α to CCH-induced VaD remains to be established and requires further investigation.
Collapse
Affiliation(s)
- Phakkawat Thangwong
- Department of Medical Science, School of Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Functional Food Research Center for Well-Being, Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Functional Food Research Center for Well-Being, Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
2
|
Park SJ, Park W, Kim YJ, Ahn K, Moon KS, Kim IY, Jung S, Marcelina CDC, Kim SK, Lee KH, Jung TY. Gamma knife radiosurgery for metastatic brain tumors with contrast media leakage: Case series. Medicine (Baltimore) 2025; 104:e41189. [PMID: 40184089 PMCID: PMC11709185 DOI: 10.1097/md.0000000000041189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 04/05/2025] Open
Abstract
RATIONALE The phenomenon of "contrast media leakage" in metastatic brain tumors, where contrast enhancement of perilesional edema can overestimate actual tumor volume. PATIENT CONCERNS AND DIAGNOSIS The radiologic and pathologic characteristics of 3 surgically resected metastatic brain tumors with contrast media leakage were analyzed. Five metastatic tumors were treated with gamma knife radiosurgery (GKRS), deliberately avoiding areas of contrast media leakage. INTERVENTIONS The characteristics of these tumors, the administered radiation dosage, and progression-free survival were evaluated. OUTCOMES The region of "contrast media leakage within edema" showed different signals from tumor boundaries on T2-weighted magnetic resonance imaging, fluid-attenuated inversion recovery, and apparent diffusion coefficient maps. No increased cerebral blood volume and a low transfer coefficient were indicated on perfusion images. Pathologically, these areas showed prominent endothelial proliferation and perivascular lymphocyte infiltration without tumor cell infiltration. Immunohistochemical staining revealed a weak positive for clauidin-5 and a strong positive with antibodies against leukocyte common antigen and cluster of differentiation 68. Five lesions treated with GKRS were adenocarcinomas of lung origin. The median radiation volume was 3.10 cc (range, 2.32-3.78), and the median radiation dose was 22 Gy (range, 20-22). Treatment responses were nearly complete in 1, partial in 3, and stable in 1. There were recurrences at 6.0 and 10.0 months after GKRS. Median progression-free survival was 18.2 months (95% confidence interval: 9.2-27.1), and there was no treatment-related complication. LESSONS This study revealed that the region of "contrast media leakage within edema" showed more pronounced blood-brain barrier disruption associated with inflammatory cells. It was effective when the GKRS targeted the actual tumor, excluding the area with contrast media leakage.
Collapse
Affiliation(s)
- Sue-Jee Park
- Department of Neurosurgery, Chonnam National University Medical School and Hwasun Hospital, Seoyang-ro, Republic of Korea
| | - Wan Park
- Department of Neurosurgery, Chonnam National University Medical School and Hwasun Hospital, Seoyang-ro, Republic of Korea
| | - Yeong Jin Kim
- Department of Neurosurgery, Chonnam National University Medical School and Hwasun Hospital, Seoyang-ro, Republic of Korea
| | - Kanghee Ahn
- Department of Neurosurgery, Chonnam National University Medical School and Hwasun Hospital, Seoyang-ro, Republic of Korea
| | - Kyung-Sub Moon
- Department of Neurosurgery, Chonnam National University Medical School and Hwasun Hospital, Seoyang-ro, Republic of Korea
| | - In-Young Kim
- Department of Neurosurgery, Chonnam National University Medical School and Hwasun Hospital, Seoyang-ro, Republic of Korea
| | - Shin Jung
- Department of Neurosurgery, Chonnam National University Medical School and Hwasun Hospital, Seoyang-ro, Republic of Korea
| | | | - Seul-Kee Kim
- Department of Radiology, Chonnam National University Medical School and Hwasun Hospital, Seoyang-ro, Republic of Korea
| | - Kyung-Hwa Lee
- Department of Pathology, Chonnam National University Medical School and Hwasun Hospital, Seoyang-ro, Republic of Korea
| | - Tae-Young Jung
- Department of Neurosurgery, Chonnam National University Medical School and Hwasun Hospital, Seoyang-ro, Republic of Korea
| |
Collapse
|
3
|
Kim MS, Kim BY, Kim JI, Lee J, Jeon WK. Mumefural Improves Recognition Memory and Alters ERK-CREB-BDNF Signaling in a Mouse Model of Chronic Cerebral Hypoperfusion. Nutrients 2023; 15:3271. [PMID: 37513692 PMCID: PMC10383324 DOI: 10.3390/nu15143271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023] Open
Abstract
Cognitive impairment resulting from chronic cerebral hypoperfusion (CCH) is known as vascular dementia (VaD) and is associated with cerebral atrophy and cholinergic deficiencies. Mumefural (MF), a bioactive compound found in a heated fruit of Prunus mume Sieb. et Zucc, was recently found to improve cognitive impairment in a rat CCH model. However, additional evidence is necessary to validate the efficacy of MF administration for treating VaD. Therefore, we evaluated MF effects in a mouse CCH model using unilateral common carotid artery occlusion (UCCAO). Mice were subjected to UCCAO or sham surgery and orally treated with MF daily for 8 weeks. Behavioral tests were used to investigate cognitive function and locomotor activity. Changes in body and brain weights were measured, and levels of hippocampal proteins (brain-derived neurotrophic factor (BDNF), extracellular signal-regulated kinase (ERK), cyclic AMP-response element-binding protein (CREB), and acetylcholinesterase (AChE)) were assessed. Additionally, proteomic analysis was conducted to examine the alterations in protein profiles induced by MF treatment. Our study showed that MF administration significantly improved cognitive deficits. Brain atrophy was attenuated and MF treatment reversed the increase in AChE levels. Furthermore, MF significantly upregulated p-ERK/ERK, p-CREB/CREB, and BDNF levels after UCCAO. Thus, MF treatment ameliorates CCH-induced cognitive impairment by regulating ERK/CREB/BDNF signaling, suggesting that MF is a therapeutic candidate for treating CCH.
Collapse
Affiliation(s)
- Min-Soo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Bu-Yeo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Jung Im Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | | | - Won Kyung Jeon
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| |
Collapse
|
4
|
Fang C, Liu J, Feng M, Jia Z, Li Y, Dai Y, Zhu M, Huang B, Liu L, Wei Z, Wang X, Xiao H. Shengyu Decoction treating vascular cognitive impairment by promoting AKT/HIF-1α/VEGF related cerebrovascular generation and ameliorating MAPK/NF-κB mediated neuroinflammation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115441. [PMID: 35700854 DOI: 10.1016/j.jep.2022.115441] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/22/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shengyu Decoction (SYD), a classical Chinese medicine formula, is good at nourishing blood, promoting blood circulation, and soothe the nerves. SYD can improve cognitive ability. This decoction is suitable for treating vascular cognitive impairment (VCI). however, its active ingredients and possible mechanism have not been investigated. AIM OF THE STUDY This study was conducted to observe the effects of SYD on improving the cognitive abilities of rats with VCI, to explore its active ingredients and mechanism. MATERIALS AND METHODS The rats with VCI model were established by bilateral common carotid artery occlusion (BCCAO), and the effects of SYD (5, 2.5 g/kg) on the cognitive abilities of VCI rats were evaluated using the Morris water maze (MWM) and neurological assessment. The pathological changes of hippocampal CA1 were observed by H &E and Nissl staining. The effect of SYD on cerebral blood flow (CBF) was evaluated by Laser Speckle Contrast Imager. The expression of CD31 in the cerebral cortex was measured by immunofluorescence (IF) to evaluate the number of cerebral micro vessels. The levels of IL-6, IL-1β, and TNF-α in the hippocampus were determined using an ELISA kit, and the active components in the plasma and brain tissues of rats after SYD administration were analyzed using UPLC-Q-TOF-MS/MS. The interaction network of the compound-target pathway was established using the SWISS Target, GO, and DAVID databases. The expression of AKT/HIF-1α/VEGF and p38 MAPK signaling pathway in the brain tissues was determined using western blotting (WB). RESULTS SYD (2.5, 5 g/kg) significantly improved the cognitive abilities of VCI rats in the MWM and neurological assessment. H&E and Nissl staining showed that SYD significantly ameliorated the pathological hippocampal CA1 area and increased the number of Nissl bodies. The Laser Speckle Contrast Imager showed that the cortical CBF of VCI rats in the SYD group was significantly increased, and the IF results showed that CD31 expression was significantly increased in the SYD group. The ELISA results showed that the contents of IL-6, IL-1β, and TNF-α in SYD were significantly reduced. A total of 29 compounds were found in the plasma and brain tissues of the rats treated with SYD. Network pharmacology revealed 99 targets for the treatment of VCI. Pathway enrichment analysis showed that the HIF-1 and MAPK signaling pathways might be important for SYD to ameliorate VCI. WB showed that the expressions of AKT, HIF-1α, and VEGF in the brain tissues of rats were significantly increased; in addition, NF-κB and p38 MAPK were significantly reduced in the SYD group. CONCLUSION SYD can improve the cognitive abilities of VCI rats. The mechanism of action of its active ingredients improves cognitive impairment by affecting the AKT/HIF-1α/VEGF and p38 MAPK/NF-κB signaling pathways, promoting cerebrovascular generation, and ameliorating neuroinflammation.
Collapse
Affiliation(s)
- Cong Fang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China; Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Liu
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
| | - Menghan Feng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China; Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
| | - Zhixin Jia
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
| | - Yueting Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China; Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
| | - Yihang Dai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China; Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
| | - Meixia Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China; Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
| | - Beibei Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China; Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
| | - Lirong Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China; Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
| | - Zuying Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China; Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China
| | - Xu Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hongbin Xiao
- Research Center of Chinese Medicine Analysis and Transformation, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
5
|
Kim MS, Bang J, Kim BY, Jeon WK. Impaired Cognitive Flexibility Induced by Chronic Cerebral Hypoperfusion in the 5XFAD Transgenic Mouse Model of Mixed Dementia. J Gerontol A Biol Sci Med Sci 2021; 76:1169-1178. [PMID: 33709149 PMCID: PMC8202140 DOI: 10.1093/gerona/glab075] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Indexed: 12/27/2022] Open
Abstract
Cerebrovascular lesions are widely prevalent in patients with Alzheimer’s disease (AD), but their relationship to the pathophysiology of AD remains poorly understood. An improved understanding of the interaction of cerebrovascular damage with AD is crucial for the development of therapeutic approaches. Herein, we investigated the effects of chronic cerebral hypoperfusion (CCH) in a 5XFAD transgenic (Tg) mouse model of AD. We established CCH conditions in both Tg and non-Tg mice by inducing unilateral common carotid artery occlusion (UCCAO). Cognitive performance in mice was evaluated, and their brain tissue was examined for amyloid-beta (Aβ) pathology to elucidate possible mechanisms. We found that UCCAO-operated Tg mice showed impaired cognitive flexibility in the reversal phase of the hidden-platform water maze task compared to sham-operated Tg mice. Interestingly, UCCAO-operated Tg mice used fewer spatial cognitive strategies than sham-operated Tg mice during reversal learning. These cognitive deficits were accompanied by increased Aβ plaque burden and Aβ42 levels in the hippocampus and prefrontal cortex, 2 regions that play essential roles in the regulation of cognitive flexibility. Furthermore, changes in cognitive flexibility are strongly correlated with the expression levels of enzymes related to Aβ clearance, such as neprilysin and insulin-degrading enzymes. These findings suggest that, in 5XFAD mice, impaired cognitive flexibility is related to CCH, and that Aβ clearance might be involved in this process.
Collapse
Affiliation(s)
- Min-Soo Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea.,Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul, South Korea
| | - Jihye Bang
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea.,Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul, South Korea
| | - Bu-Yeo Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Won Kyung Jeon
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea.,Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul, South Korea
| |
Collapse
|
6
|
Blume C, Geiger MF, Müller M, Clusmann H, Mainz V, Kalder J, Brandenburg LO, Mueller CA. Decreased angiogenesis as a possible pathomechanism in cervical degenerative myelopathy. Sci Rep 2021; 11:2497. [PMID: 33510227 PMCID: PMC7843718 DOI: 10.1038/s41598-021-81766-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 01/07/2021] [Indexed: 01/03/2023] Open
Abstract
Endogenous immune mediated reactions of inflammation and angiogenesis are components of the spinal cord injury in patients with degenerative cervical myelopathy (DCM). The aim of this study was to identify alteration of certain mediators participating in angiogenetic and inflammatory reactions in patients with DCM. A consecutive series of 42 patients with DCM and indication for surgical decompression were enrolled for the study. 28 DCM patients were included, as CSF samples were taken preoperatively. We enrolled 42 patients requiring surgery for a thoracic abdominal aortic aneurysm (TAAA) as neurologically healthy controls. In 38 TAAA patients, CSF samples were taken prior to surgery and thus included. We evaluated the neurological status of patients and controls prior to surgery including NDI and mJOA. Protein-concentrations of factors with a crucial role in inflammation and angiogenesis were measured in CSF via ELISA testing (pg/ml): Angiopoietin 2, VEGF-A and C, RANTES, IL 1 beta and IL 8. Additionally, evaluated the status of the blood-spinal cord barrier (BSCB) by Reibers´diagnostic in all participants. Groups evidently differed in their neurological status (mJOA: DCM 10.1 ± 3.3, TAAA 17.3 ± 1.2, p < .001; NDI: DCM 47.4 ± 19.7, TAAA 5.3 ± 8.6, p < .001). There were no particular differences in age and gender distribution. However, we detected statistically significant differences in concentrations of mediators between the groups: Angiopoietin 2 (DCM 267.1.4 ± 81.9, TAAA 408.6 ± 177.1, p < .001) and VEGF C (DCM 152.2 ± 96.1, TAAA 222.4 ± 140.3, p = .04). DCM patients presented a mild to moderate BSCB disruption, controls had no signs of impairment. In patients with DCM, we measured decreased concentrations of angiogenic mediators. These results correspond to findings of immune mediated secondary harm in acute spinal cord injury. Reduced angiogenic activity could be a relevant part of the pathogenesis of DCM and secondary harm to the spinal cord.
Collapse
Affiliation(s)
- Christian Blume
- Department of Neurosurgery, RWTH Aachen University, Pauwelstrasse 30, 52074, Aachen, Germany.
| | - M F Geiger
- Department of Neurosurgery, RWTH Aachen University, Pauwelstrasse 30, 52074, Aachen, Germany
| | - M Müller
- Department of Neuroradiology, RWTH Aachen University, Pauwelstrasse 30, 52074, Aachen, Germany
| | - H Clusmann
- Department of Neurosurgery, RWTH Aachen University, Pauwelstrasse 30, 52074, Aachen, Germany
| | - V Mainz
- Department of Medical Psychology and Medical Sociology, RWTH Aachen University, Pauwelsstrasse 19, 52074, Aachen, Germany
| | - J Kalder
- Department of Vascular Surgery, Gießen University, Rudolf-Buchheim-str. 7, 35392, Gießen, Germany
| | - L O Brandenburg
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, 18057, Rostock, Germany
| | - C A Mueller
- Department of Neurosurgery, RWTH Aachen University, Pauwelstrasse 30, 52074, Aachen, Germany
| |
Collapse
|
7
|
Barca C, Foray C, Hermann S, Döring C, Schäfers M, Jacobs AH, Zinnhardt B. Characterization of the inflammatory post-ischemic tissue by full volumetric analysis of a multimodal imaging dataset. Neuroimage 2020; 222:117217. [PMID: 32745676 DOI: 10.1016/j.neuroimage.2020.117217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/29/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION In vivo positron emission tomography (PET) and magnetic resonance imaging (MRI) support non-invasive assessment of the spatiotemporal expression of proteins of interest and functional/structural changes. Our work promotes the use of a volumetric analysis on multimodal imaging datasets to assess the spatio-temporal dynamics and interaction of two imaging biomarkers, with a special focus on two neuroinflammation-related biomarkers, the translocator protein (TSPO) and matrix metalloproteinases (MMPs), in the acute and chronic post-ischemic phase. AIM To improve our understating of the neuroinflammatory reaction and tissue heterogeneity during the post ischemic phase, we aimed (i) to assess the spatio-temporal distribution of two radiotracers, [18F]DPA-714 (TSPO) and [18F]BR-351 (MMPs), (ii) to investigate their spatial interaction, including exclusive and overlapping areas, and (iii) their relationship with the T2w-MRI ischemic lesion in a transient middle cerebral artery occlusion (tMCAo) mouse model using an atlas-based volumetric analysis. METHODS As described by Zinnhardt et al. (2015), a total of N = 30 C57BL/6 mice underwent [18F]DPA-714 and [18F]BR-351 PET-CT and subsequent MR imaging 24-48 h (n = 8), 7 ± 1 days (n = 8), 14 ± 1 days (n = 7), and 21 ± 1 days (n = 7) after 30 min transient middle cerebral artery occlusion (tMCAo). To further investigate the spatio-temporal distribution of [18F]DPA-714 and [18F]BR-351, an atlas-based ipsilesional volume of interest (VOI) was applied to co-registered PET-CT images and thresholded by the mean uptake + 2.5*standard deviation of a contralateral striatal control VOI. Mean lesion-to-contralateral ratios (L/C), volume extension (V in voxel), percentages of overlap and exclusive tracer uptake areas were determined. Both tracer volumes were also compared to the lesion extent depicted by T2w-MR imaging. RESULTS Both imaging biomarkers showed a constant small percentage of overlap across all time points (14.0 ± 14.2%). [18F]DPA-714 reached its maximum extent and uptake at day 14 post ischemia (V = 12,143 ± 6262 voxels, L/C = 2.32 ± 0.48). The majority of [18F]DPA-714 volume (82.4 ± 16.1%) was exclusive for [18F]DPA-714 and showed limited overlap with [18F]BR-351 and T2w-MRI lesion volumes. On the other hand, [18F]BR-351 reached its maximum extent already 24-48 h after tMCAo (V = 7279 ± 4518 voxels) and significantly decreased at day 14 (V = 1706 ± 1202 voxels). Focal spots of residual activity were still observed at day 21 post ischemia (L/C = 2.10 ± 0.37). The majority of [18F]BR-351 volume was exclusive for [18F]BR-351 (81.50 ± 25.07%) at 24-48 h and showed 64.84 ± 28.29% of overlap with [18F]DPA-714 from day 14 post ischemia while only 9.28 ± 13.45% of the [18F]BR-351 volume were overlapping the T2w-MRI lesion. The percentage of exclusive area of [18F]DPA-714 and [18F]BR-351 uptakes regarding T2w-MR lesion increased over time, suggesting that TSPO and MMPs are mostly localized in the peri‑infarct region at latter time points. CONCLUSION This study promotes the use of an unbiased volumetric analyses of multi-modal imaging data sets to improve the characterization of pathological tissue heterogeneity. This approach improves our understanding of (i) the dynamics of disease-related multi-modal imaging biomarkers, (ii) their spatiotemporal interactions and (iii) the post-ischemic tissue heterogeneity. Our results indicate acute MMPs activation after tMCAo preceding TSPO-dependent (micro-)gliosis. The spatial distribution of MMPs and gliosis is regionally independent with only minor (< 20%) overlapping areas in peri‑infarct regions.
Collapse
Affiliation(s)
- Cristina Barca
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany; PET Imaging in Drug Design and Development (PET3D), Münster, Germany.
| | - Claudia Foray
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany; PET Imaging in Drug Design and Development (PET3D), Münster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany; Immune Image, Innovative Medicines Initiative (IMI)
| | - Christian Döring
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
| | - Michael Schäfers
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany; Immune Image, Innovative Medicines Initiative (IMI); Department of Nuclear Medicine, University Hospital Münster, Münster, Germany; Cells in Motion Interfaculty Centre (CiM), University of Münster, Münster, Germany
| | - Andreas H Jacobs
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany; PET Imaging in Drug Design and Development (PET3D), Münster, Germany; Imaging Neuroinflammation in Neurodegenerative Diseases (INMIND) EU FP7 consortium, Münster, Germany; Immune Image, Innovative Medicines Initiative (IMI); Department of Geriatrics, Johanniter Hospital, Bonn, Germany
| | - Bastian Zinnhardt
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany; PET Imaging in Drug Design and Development (PET3D), Münster, Germany; Imaging Neuroinflammation in Neurodegenerative Diseases (INMIND) EU FP7 consortium, Münster, Germany; Immune Image, Innovative Medicines Initiative (IMI); Department of Nuclear Medicine, University Hospital Münster, Münster, Germany.
| |
Collapse
|
8
|
Yang Y, Zhao L, Li N, Dai C, Yin N, Chu Z, Duan X, Niu X, Yan P, Lv P. Estrogen Exerts Neuroprotective Effects in Vascular Dementia Rats by Suppressing Autophagy and Activating the Wnt/β-Catenin Signaling Pathway. Neurochem Res 2020; 45:2100-2112. [PMID: 32719979 DOI: 10.1007/s11064-020-03072-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/23/2020] [Accepted: 06/12/2020] [Indexed: 01/24/2023]
Abstract
Vascular dementia (VD) is a clinical syndrome of acquired cognitive dysfunction caused by various cerebrovascular factors. Estrogen is a steroid hormone involved in promoting neuronal survival and in regulating many signaling pathways. However, the mechanism by which it confers neuroprotective effects in VD remains unclear. Here, we aimed to investigate the effect of estrogen on neuronal injury and cognitive impairment in VD rats. Adult female rats were randomly divided into four groups (sham, model, estrogen early and estrogen later treatment) and received sham surgery or bilateral ovariectomy and permanent occlusion of bilateral common carotid arteries (BCCAO). The early treatment group received daily intraperitoneal injections of 17β-estradiol (100 µg/kg/day) for 8 weeks starting the day after BCCAO. The later treatment group was administered the same starting 1 week after BCCAO. Learning and memory functions were assessed using the Morris water maze. Morphological changes within the hippocampal CA1 region were observed by hematoxylin/eosin staining and electron microscopy. Expression of proteins associated with autophagy and signaling were detected by immunohistochemical staining and Western blot. We found that estrogen significantly alleviated cognitive damage and neuronal injury and reduced the expression of Beclin1 and LC3B, indicating a suppression of autophagy. Moreover, estrogen enhanced expression of β-catenin and Cyclin D1, while reducing glycogen synthase kinase 3β, suggesting activation of Wnt/β-catenin signaling. These results indicate that estrogen ameliorates learning and memory deficiencies in VD rats, and that this neuroprotective effect may be explained by the suppression of autophagy and activation of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Yanyan Yang
- Department of Neurology, Hebei Medical University, Shijiazhuang, 050017, China.,Department of Gynecology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Lei Zhao
- Department of Neurology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Na Li
- Department of Gynecology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Congwei Dai
- Department of Gynecology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Nan Yin
- Department of Neurology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Zhaoping Chu
- Department of Gynecology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Xiaoyan Duan
- Department of Gynecology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Xiaoli Niu
- Department of Neurology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Ping Yan
- Department of Gynecology, Hebei General Hospital, Shijiazhuang, 050051, China
| | - Peiyuan Lv
- Department of Neurology, Hebei General Hospital, Shijiazhuang, 050051, China.
| |
Collapse
|
9
|
Jun YH, Ju GS, Chung YY, Shin HK, Kim DJ, Choi MS, Kim ST, Son KM. Differential Expression of Vascular Endothelial Growth Factor in the Cortex and Hippocampus upon Cerebral Hypoperfusion. In Vivo 2020; 34:191-197. [PMID: 31882479 DOI: 10.21873/invivo.11761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/02/2019] [Accepted: 10/15/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND/AIM Vascular endothelial growth factor (VEGF) provides tolerance against ischemic brain injury, yet, the pattern of VEGF expression in the neurogenic zones following chronic cerebral hypoperfusion has not been studied. Here we evaluated the immunoreactivity of VEGF in a rat model of chronic cerebral hypoperfusion. MATERIALS AND METHODS Chronic hypoperfusion was induced by bilateral common carotid artery ligation in rats. Immunohistochemistry was performed against hypoxia-inducible factor-1α (HIF-1α) and VEGF on brain sections. RESULTS The density of HIF1α-positive cells in the hypoxia group was increased in the cerebral cortex and hippocampus. Further, the density of VEGF-positive cells was significantly higher in the hypoxia group compared to the control group in the cerebral cortex whereas it was similar in the subventricular zone, and in the dentate gyrus in the hippocampus between the two groups. CONCLUSION The pattern of VEGF expression varies in different brain regions following chronic cerebral hypoperfusion.
Collapse
Affiliation(s)
- Yong Hyun Jun
- Department of Anatomy, School of Medicine, Chosun University, Gwang-ju, Republic of Korea
| | - Gang San Ju
- Department of Plastic and Reconstructive Surgery, Chosun University Hospital, Gwang-ju, Republic of Korea
| | - Yoon Young Chung
- Department of Anatomy, School of Medicine, Chosun University, Gwang-ju, Republic of Korea
| | - Hye-Kyoung Shin
- Department of Anatomy, School of Medicine, Chosun University, Gwang-ju, Republic of Korea
| | - Dong-Joon Kim
- Department of Anesthesiology and Pain Medicine, Chosun University Hospital, Gwang-ju, Republic of Korea
| | - Min Seon Choi
- Department of Pediatrics, Chosun University Hospital, Gwang-ju, Republic of Korea
| | - Seong Taeck Kim
- Department of Ophthalmology, Chosun University Hospital, Gwang-ju, Republic of Korea
| | - Kyung Min Son
- Department of Plastic and Reconstructive Surgery, Chosun University Hospital, Gwang-ju, Republic of Korea
| |
Collapse
|
10
|
Uemura MT, Maki T, Ihara M, Lee VMY, Trojanowski JQ. Brain Microvascular Pericytes in Vascular Cognitive Impairment and Dementia. Front Aging Neurosci 2020; 12:80. [PMID: 32317958 PMCID: PMC7171590 DOI: 10.3389/fnagi.2020.00080] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/04/2020] [Indexed: 12/19/2022] Open
Abstract
Pericytes are unique, multi-functional mural cells localized at the abluminal side of the perivascular space in microvessels. Originally discovered in 19th century, pericytes had drawn less attention until decades ago mainly due to lack of specific markers. Recently, however, a growing body of evidence has revealed that pericytes play various important roles: development and maintenance of blood–brain barrier (BBB), regulation of the neurovascular system (e.g., vascular stability, vessel formation, cerebral blood flow, etc.), trafficking of inflammatory cells, clearance of toxic waste products from the brain, and acquisition of stem cell-like properties. In the neurovascular unit, pericytes perform these functions through coordinated crosstalk with neighboring cells including endothelial, glial, and neuronal cells. Dysfunction of pericytes contribute to a wide variety of diseases that lead to cognitive impairments such as cerebral small vessel disease (SVD), acute stroke, Alzheimer’s disease (AD), and other neurological disorders. For instance, in SVDs, pericyte degeneration leads to microvessel instability and demyelination while in stroke, pericyte constriction after ischemia causes a no-reflow phenomenon in brain capillaries. In AD, which shares some common risk factors with vascular dementia, reduction in pericyte coverage and subsequent microvascular impairments are observed in association with white matter attenuation and contribute to impaired cognition. Pericyte loss causes BBB-breakdown, which stagnates amyloid β clearance and the leakage of neurotoxic molecules into the brain parenchyma. In this review, we first summarize the characteristics of brain microvessel pericytes, and their roles in the central nervous system. Then, we focus on how dysfunctional pericytes contribute to the pathogenesis of vascular cognitive impairment including cerebral ‘small vessel’ and ‘large vessel’ diseases, as well as AD. Finally, we discuss therapeutic implications for these disorders by targeting pericytes.
Collapse
Affiliation(s)
- Maiko T Uemura
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,JSPS Overseas Research Fellowship Program, Japan Society for the Promotion of Science, Tokyo, Japan
| | - Takakuni Maki
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Virginia M Y Lee
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - John Q Trojanowski
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
11
|
Kim MS, Bang J, Jeon WK. The Involvement of Canonical Wnt Signaling in Memory Impairment Induced by Chronic Cerebral Hypoperfusion in Mice. Transl Stroke Res 2020; 11:734-746. [DOI: 10.1007/s12975-019-00748-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 01/25/2023]
|
12
|
Yin J, Gong G, Liu X. Angiopoietin: A Novel Neuroprotective/Neurotrophic Agent. Neuroscience 2019; 411:177-184. [PMID: 31152935 DOI: 10.1016/j.neuroscience.2019.05.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 11/29/2022]
Abstract
Angiopoietin (Ang) is an angiogenic factor, but its neuroprotective and neurotrophic effects have recently come to light. Ang exerts neuroprotective effects by inhibiting neuronal apoptosis, protecting the blood-brain/blood-spinal cord barrier, reducing inflammation and promoting neovascularization. In addition, Ang can also promote neural development and neurite outgrowth via activation of the PI3K/Akt signaling pathway and binding to the Tie2 receptor and/or integrin receptor. In addition, Ang and vascular endothelial growth factor (VEGF) are known to interact in blood vessels in the nervous system and the combination of Ang and VEGF can mitigate the negative effects of VEGF, such as inflammation and local edema. These data indicated that Ang is a novel neuroprotective/neurotrophic factor, which may become a new tool for the treatment of nerve injury.
Collapse
Affiliation(s)
- Jian Yin
- Department of Orthopedics, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing 211100, China
| | - Ge Gong
- Department of Geriatrics, Jinling Hospital, Medical School of Nanjing University, Nanjing, 211002, China
| | - Xinhui Liu
- Department of Orthopedics, the Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing 211100, China.
| |
Collapse
|
13
|
Dl-3-n-Butylphthalide regulates the Ang-1/Ang-2/Tie-2 signaling axis to promote neovascularization in chronic cerebral hypoperfusion. Biomed Pharmacother 2019; 113:108757. [DOI: 10.1016/j.biopha.2019.108757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/27/2019] [Accepted: 03/04/2019] [Indexed: 12/29/2022] Open
|