1
|
Kefalopoulou ZM, Veltsista D, Germeni A, Lykouras D, Tsiamaki E, Chroni E. Rituximab as a sole steroid-sparing agent in generalized myasthenia gravis: Long-term outcomes. Neurol Sci 2024; 45:1233-1242. [PMID: 37831214 DOI: 10.1007/s10072-023-07082-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/16/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Rituximab, a B-cell depleting monoclonal antibody, represents an option for the treatment of refractory myasthenia gravis (MG). Its use is more established in muscle-specific tyrosine kinase positive (MuSK +) patients, while its role in managing acetylcholine receptor positive (AChR +), or double seronegative (DSN) patients, remains less clear. This study evaluates the long-term effectiveness and safety of rituximab in MG of various serotypes. METHODS We conducted an open-label study of MG patients receiving rituximab. Adults with generalized refractory MG, either anti-AChR + or DSN, and anti-MuSK + , refractory or not, who had follow-up > 12 months were selected. Change in quantitative myasthenia gravis (QMG) score at last follow-up, compared with baseline was a primary outcome, as well as factors affecting response to treatment. Secondary outcomes included, long-term safety, the steroid-sparing effect and relapse rates post-rituximab. RESULTS Thirty patients (16 anti-AChR + , 6 anti-MuSK + , 8 DSN) followed for a mean of 33.3 months were included. Mean scores pre-rituximab compared to last follow-up significantly decreased (p < 0.001), from 11 ± 4.1 to 4.3 ± 3.8, and from 1.9 to 0.3 regarding QMG and relapse rate per patient/year, respectively, while in 93.1% a daily steroid dose ≤ 10 mg was achieved. Antibody status was the only factor independently influencing several endpoints. Throughout the study period no crises or deaths occurred. CONCLUSION The present study supports that rituximab is an effective and well tolerated treatment for refractory anti-AChR + and DSN MG patients, while anti-MuSK + remains the group experiencing the greater benefits.
Collapse
Affiliation(s)
- Zinovia-Maria Kefalopoulou
- Department of Neurology, University Hospital of Patras, 26504, Patras, Rio, Greece.
- Neuromuscular Centre, University Hospital of Patras, 26504, Patras, Rio, Greece.
| | - Dimitra Veltsista
- Department of Neurology, University Hospital of Patras, 26504, Patras, Rio, Greece
- Neuromuscular Centre, University Hospital of Patras, 26504, Patras, Rio, Greece
| | - Alexandra Germeni
- Department of Neurology, University Hospital of Patras, 26504, Patras, Rio, Greece
| | - Dimosthenis Lykouras
- Department of Respiratory Medicine, University Hospital of Patras, 26504, Patras, Rio, Greece
| | - Eirini Tsiamaki
- Department of Neurology, University Hospital of Patras, 26504, Patras, Rio, Greece
| | - Elisabeth Chroni
- Department of Neurology, University Hospital of Patras, 26504, Patras, Rio, Greece
- Neuromuscular Centre, University Hospital of Patras, 26504, Patras, Rio, Greece
| |
Collapse
|
2
|
Zhang Z, Xie X, Cai Y, Liu P, Liu S, Chen R, Wang J, Wang Y, Zhao Y, Zhu Z, Zhang X, Wu J. Abnormal immune function of B lymphocyte in peripheral blood of Parkinson's disease. Parkinsonism Relat Disord 2023; 116:105890. [PMID: 37839276 DOI: 10.1016/j.parkreldis.2023.105890] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/01/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is associated with peripheral inflammation and abnormal peripheral blood lymphocyte immune responses. Peripheral blood B-lymphocyte subset distributions and whether they are associated with PD are unclear. METHODS Sixty-one PD patients and sixty-one one-to-one paired healthy controls (HCs) were enrolled. We used flow cytometry to perform immunophenotyping of peripheral B-lymphocyte, in vitro stimulation and measured serum cytokine. The relationship between variables and PD were assessed. RESULTS The percentage of naive B cells in blood of PD patients was decreased, whereas the percentages of regulatory B cells (Bregs), plasma blast cells (PBCs), and double-negative (DN) B cells were increased. The absolute counts of B-lymphocyte and naive B cells in blood of PD patients were decreased. Regression analysis revealed that alterations in the absolute counts of B-lymphocyte and the percentage of Bregs and DN B cells were associated with PD. After stimulation, the percentages of Bregs, PBCs, and switched memory (SwM) B cells increased in PD patients. Additionally, increases in GM-CSF-producing B-cell, IFN-γ-producing B-cell, and TNF-α-producing B-cell percentages were noted in PD. Serum levels of a proliferation-inducing ligand (APRIL), B-cell activating factor (BAFF) and soluble CD40 ligand (sCD40L) were elevated in PD and correlated negatively with the UPDRS III score. CONCLUSIONS Abnormal B-lymphocyte immune responses in peripheral blood may contribute to PD development. Alterations in the absolute counts of B-lymphocyte and the percentage of Bregs and DN B cells are associated with PD. Furthermore, APRIL, BAFF, and sCD40L could be potential targets for intervention in PD.
Collapse
Affiliation(s)
- Zhuo Zhang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Xin Xie
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China; Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Ying Cai
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Peipei Liu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Shoufeng Liu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Rongjie Chen
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Jin Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Yue Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Yanan Zhao
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Zhizhong Zhu
- Department of Rehabilitation Medicine, Tianjin Huanhu Hospital, Tianjin, China
| | - Xinyuan Zhang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Jialing Wu
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China; Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China.
| |
Collapse
|
3
|
Unique molecular characteristics and microglial origin of Kv1.3 channel-positive brain myeloid cells in Alzheimer's disease. Proc Natl Acad Sci U S A 2021; 118:2013545118. [PMID: 33649184 DOI: 10.1073/pnas.2013545118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Kv1.3 potassium channels, expressed by proinflammatory central nervous system mononuclear phagocytes (CNS-MPs), are promising therapeutic targets for modulating neuroinflammation in Alzheimer's disease (AD). The molecular characteristics of Kv1.3-high CNS-MPs and their cellular origin from microglia or CNS-infiltrating monocytes are unclear. While Kv1.3 blockade reduces amyloid beta (Aβ) burden in mouse models, the downstream immune effects on molecular profiles of CNS-MPs remain unknown. We show that functional Kv1.3 channels are selectively expressed by a subset of CD11b+CD45+ CNS-MPs acutely isolated from an Aβ mouse model (5xFAD) as well as fresh postmortem human AD brain. Transcriptomic profiling of purified CD11b+Kv1.3+ CNS-MPs, CD11b+CD45int Kv1.3neg microglia, and peripheral monocytes from 5xFAD mice revealed that Kv1.3-high CNS-MPs highly express canonical microglial markers (Tmem119, P2ry12) and are distinct from peripheral Ly6chigh/Ly6clow monocytes. Unlike homeostatic microglia, Kv1.3-high CNS-MPs express relatively lower levels of homeostatic genes, higher levels of CD11c, and increased levels of glutamatergic transcripts, potentially representing phagocytic uptake of neuronal elements. Using irradiation bone marrow CD45.1/CD45.2 chimerism in 5xFAD mice, we show that Kv1.3+ CNS-MPs originate from microglia and not blood-derived monocytes. We show that Kv1.3 channels regulate membrane potential and early signaling events in microglia. Finally, in vivo blockade of Kv1.3 channels in 5xFAD mice by ShK-223 reduced Aβ burden, increased CD11c+ CNS-MPs, and expression of phagocytic genes while suppressing proinflammatory genes (IL1b). Our results confirm the microglial origin and identify unique molecular features of Kv1.3-expressing CNS-MPs. In addition, we provide evidence for CNS immunomodulation by Kv1.3 blockers in AD mouse models resulting in a prophagocytic phenotype.
Collapse
|
4
|
Li Y, Li Z, Hu F. Double-negative (DN) B cells: an under-recognized effector memory B cell subset in autoimmunity. Clin Exp Immunol 2021; 205:119-127. [PMID: 33969476 DOI: 10.1111/cei.13615] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022] Open
Abstract
Human B cells could be divided into four classical subsets based on CD27 and immunoglobulin (Ig)D expression. Distinct from the other three well-studied subsets, CD27- IgD- B cells, also termed as double-negative (DN) B cells, have long been neglected. However, in recent years emerging evidence shows that DN B cells are unique memory B cells with important functions. They are expanded in a variety of diseases, especially in autoimmune diseases, contributing to the disease pathogenesis. Here, we briefly review the studies on DN B cells, including their origins, characteristics, subsets and roles in diseases, to try to bring new insights into this under-recognized B cell subset.
Collapse
Affiliation(s)
- Yuzi Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Beijing, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Beijing, China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Fanlei Hu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis, Beijing, China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
5
|
Ruetsch-Chelli C, Bresch S, Seitz-Polski B, Rosenthal A, Desnuelle C, Cohen M, Brglez V, Ticchioni M, Lebrun-Frenay C. Memory B Cells Predict Relapse in Rituximab-Treated Myasthenia Gravis. Neurotherapeutics 2021; 18:938-948. [PMID: 33768513 PMCID: PMC8423951 DOI: 10.1007/s13311-021-01006-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Myasthenia gravis can be efficiently treated with rituximab but there is no consensus regarding administration and dose schedules in this indication. No marker has yet been described to predict the clinical relapse of patients. Our objective was to identify the B cell subpopulations predicting clinical relapse in patients suffering from generalized myasthenia gravis and treated with rituximab. Clinical and biological data of 34 patients followed between 2016 and 2019 were prospectively collected every 3 months. Using multiparameter flow cytometry, we assessed the percentage in leucocytes of lymphocytes and several B cell subpopulations measured in residual disease conditions. CD19+ were also measured in non-residual disease conditions. Clinical examinations were performed by neurologists using the Osserman score. Clinical relapse occurred in 14 patients (41%). No patients required ICU or ventilatory assistance. The mean improvement of the Osserman score was 17.18 (3-45) after the first rituximab treatment (p < 0.0001). The mean delay between the first rituximab maintenance cycle and clinical relapse was 386.8 days. At the time of relapse, CD27+ increased (p = 0.0006) with AUC = 0.7654, while CD19+ did not. At a threshold of 0.01%, the sensitivity and specificity of CD19+CD27+ were 75.8% and 72.8%, respectively, and the positive and negative predictive values were 28.0% and 95.6%, respectively. The percentage of memory B cells in whole blood cells can accurately predict clinical relapse in myasthenia gravis patients treated with rituximab. This monitoring allows physicians to tailor rituximab administration and to decrease the number of infusions over time.
Collapse
Affiliation(s)
- Caroline Ruetsch-Chelli
- Laboratoire d'Immunologie, CHU de Nice, Université Côte d'Azur, Nice, France
- Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM U1065, Université Côte d'Azur, Nice Côte d'Azur University, Archet Hospital, 151, route Saint-Antoine de Ginestière CS 23079 -, 06202, Nice, France
- Unité de Recherche Clinique de la Côte d'Azur (UR2CA), Université Côte d'Azur, Nice, France
| | - Saskia Bresch
- Service de Neurologie, Pasteur2, CHU de Nice, Université Côte d'Azur, Nice, France
| | - Barbara Seitz-Polski
- Laboratoire d'Immunologie, CHU de Nice, Université Côte d'Azur, Nice, France
- Unité de Recherche Clinique de la Côte d'Azur (UR2CA), Université Côte d'Azur, Nice, France
| | | | - Claude Desnuelle
- Service de Neurologie, Pasteur2, CHU de Nice, Université Côte d'Azur, Nice, France
| | - Mikael Cohen
- Service de Neurologie, Pasteur2, CHU de Nice, Université Côte d'Azur, Nice, France
- Unité de Recherche Clinique de la Côte d'Azur (UR2CA), Université Côte d'Azur, Nice, France
| | - Vesna Brglez
- Unité de Recherche Clinique de la Côte d'Azur (UR2CA), Université Côte d'Azur, Nice, France
| | - Michel Ticchioni
- Laboratoire d'Immunologie, CHU de Nice, Université Côte d'Azur, Nice, France
- Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM U1065, Université Côte d'Azur, Nice Côte d'Azur University, Archet Hospital, 151, route Saint-Antoine de Ginestière CS 23079 -, 06202, Nice, France
| | - Christine Lebrun-Frenay
- Service de Neurologie, Pasteur2, CHU de Nice, Université Côte d'Azur, Nice, France.
- Unité de Recherche Clinique de la Côte d'Azur (UR2CA), Université Côte d'Azur, Nice, France.
| |
Collapse
|
6
|
Uzawa A, Kuwabara S, Suzuki S, Imai T, Murai H, Ozawa Y, Yasuda M, Nagane Y, Utsugisawa K. Roles of cytokines and T cells in the pathogenesis of myasthenia gravis. Clin Exp Immunol 2020; 203:366-374. [PMID: 33184844 DOI: 10.1111/cei.13546] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/25/2020] [Accepted: 11/01/2020] [Indexed: 12/12/2022] Open
Abstract
Myasthenia gravis (MG) is characterized by muscle weakness and fatigue caused by the presence of autoantibodies against the acetylcholine receptor (AChR) or the muscle-specific tyrosine kinase (MuSK). Activated T, B and plasma cells, as well as cytokines, play important roles in the production of pathogenic autoantibodies and the induction of inflammation at the neuromuscular junction in MG. Many studies have focused on the role of cytokines and lymphocytes in anti-AChR antibody-positive MG. Chronic inflammation mediated by T helper type 17 (Th17) cells, the promotion of autoantibody production from B cells and plasma cells by follicular Th (Tfh) cells and the activation of the immune response by dysfunction of regulatory T (Treg ) cells may contribute to the exacerbation of the MG pathogenesis. In fact, an increased number of Th17 cells and Tfh cells and dysfunction of Treg cells have been reported in patients with anti-AChR antibody-positive MG; moreover, the number of these cells was correlated with clinical parameters in patients with MG. Regarding cytokines, interleukin (IL)-17; a Th17-related cytokine, IL-21 (a Tfh-related cytokine), the B-cell-activating factor (BAFF; a B cell-related cytokine) and a proliferation-inducing ligand (APRIL; a B cell-related cytokine) have been reported to be up-regulated and associated with clinical parameters of MG. This review focuses on the current understanding of the involvement of cytokines and lymphocytes in the immunological pathogenesis of MG, which may lead to the development of novel therapies for this disease in the near future.
Collapse
Affiliation(s)
- A Uzawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - S Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - S Suzuki
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - T Imai
- Department of Neurology, Sapporo Medical University Hospital, Sapporo, Japan
| | - H Murai
- Department of Neurology, International University of Health and Welfare, Narita, Japan
| | - Y Ozawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - M Yasuda
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Y Nagane
- Department of Neurology, Hanamaki General Hospital, Hanamaki, Japan
| | - K Utsugisawa
- Department of Neurology, Hanamaki General Hospital, Hanamaki, Japan
| |
Collapse
|