1
|
Rossi R, Mainardi E, Vizzarri F, Corino C. Verbascoside-Rich Plant Extracts in Animal Nutrition. Antioxidants (Basel) 2023; 13:39. [PMID: 38247465 PMCID: PMC10812750 DOI: 10.3390/antiox13010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
In recent years, the search for dietary intervention with natural products able to sustain animal health and decrease environmental impact, has raised the number of studies pertaining to the use of plants' secondary metabolites. In fact, in livestock, there is a clear relationship between the animals' antioxidant status and the onset of some diseases that negatively affect animal welfare, health, and productive performance. An interesting compound that belongs to the secondary metabolites family of plants, named phenylpropanoids, is verbascoside. The genus Verbascum, which includes more than 233 plant species, is the genus in which this compound was first identified, but it has also been found in other plant extracts. Verbascoside exhibits several properties such as antioxidant, anti-inflammatory, chemopreventive, and neuroprotective properties, that have been evaluated mainly in in vitro studies for human health. The present work reviews the literature on the dietary integration of plant extracts containing verbascoside in livestock. The effects of dietary plant extracts containing verbascoside on the productive performance, antioxidant status, blood parameters, and meat quality in several animal species were evaluated. The present data point out that dietary plant extracts containing verbascoside appear to be a favorable dietary intervention to enhance health, antioxidant status, and product quality in livestock.
Collapse
Affiliation(s)
- Raffaella Rossi
- Department of Veterinary Medicine and Animal Science, Università Degli Studi di Milano, Via Dell’Università 6, 26900 Lodi, Italy; (E.M.); (C.C.)
| | - Edda Mainardi
- Department of Veterinary Medicine and Animal Science, Università Degli Studi di Milano, Via Dell’Università 6, 26900 Lodi, Italy; (E.M.); (C.C.)
| | - Francesco Vizzarri
- National Agricultural and Food Centre Nitra, Hlohovecká 2, 95141 Lužianky, Slovakia;
| | - Carlo Corino
- Department of Veterinary Medicine and Animal Science, Università Degli Studi di Milano, Via Dell’Università 6, 26900 Lodi, Italy; (E.M.); (C.C.)
| |
Collapse
|
2
|
Baghdadi HBA, Rizk MA. Camellia sinensis Aqueous Extract: A Promising Candidate for Hepatic Eimeriosis Treatment in Rabbits. Pharmaceuticals (Basel) 2023; 16:1598. [PMID: 38004463 PMCID: PMC10674767 DOI: 10.3390/ph16111598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023] Open
Abstract
Eimeria stiedae (E. stiedae) is a common coccidian species that infects the liver and causes economic losses for the rabbit industry. This study aimed to determine the efficiency of green tea aqueous extract (GTE) as a natural treatment for eimeriosis caused by E. stiedae. Male rabbits Cuniculus L. (Oryctolagus) of the New Zealand White rabbit strain (4-4.5 months) were used, as they are suitable for research and conducting experiments. Thirty rabbits were allocated into six groups, with five rabbits in each group; the G1 group (non-infected untreated) served as a negative control group; the G2 group was not infected and treated with 250 mg GTE; the G3 group was not infected and treated with 500 mg GTE; the G4 group was untreated and was infected with 3 × 104 Sporulated E. stiedae oocysts, which served as a positive control group; the G5 group was infected and treated with 250 mg GTE; and the G6 group was infected and treated with 500 mg GTE. The hematological and biochemical analyses of each group of rabbit sera were carried out. Phytochemical analysis was performed to evaluate the active components in GTE leaves using the following methods: IR spectroscopy, liquid chromatography-mass spectrometry (LC-MS), energy-dispersive X-ray spectroscopy (EDX), and scanning electron microscopy. The infected rabbit groups treated with GTE at both doses of 250 and 500 mg/kg exhibited a significant decrease in the extent of E. stiedae oocyst shedding compared with the infected untreated group at 14, 21, and 28 days post-infection. Also, treatment with green tea showed improvement in liver weight compared with the enlarged livers of infected, untreated rabbits. The disturbance in serum liver enzymes' gamma-glutamyl transferase (GGT) and aspartate aminotransferase (AST/GOT) levels, as well as serum glucose, potassium, uric acid, cholesterol, and urea levels, were improved after the treatment of infected rabbit groups with green tea compared with the infected untreated group. Moreover, in this study, the images of the egg stages of the parasite were taken using a fluorescence microscope at 25 µm and 26 µm magnifications. This study provides promising results for the effective cell absorption of the aqueous extract of green tea, which was confirmed in the analyzed images using a scanning electron microscope at 5 µm and 20 µm magnifications.
Collapse
Affiliation(s)
- Hanadi B. A. Baghdadi
- Biology Department, College of Science, Imam Abdurrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
- Basic and Applied Scientific Research Center, Dammam 31441, Saudi Arabia
| | - Mohamed Abdo Rizk
- Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
3
|
Rizwan HM, Khan MK, Mughal MAS, Abbas Z, Abbas RZ, Sindhu ZUD, Sajid MS, Ain QU, Abbas A, Zafar A, Imran M, Aqib AI, Nadeem M. A new insight in immunomodulatory impact of botanicals in treating avian coccidiosis. J Parasit Dis 2022; 46:1164-1175. [PMID: 36457787 PMCID: PMC9606196 DOI: 10.1007/s12639-022-01519-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/20/2022] [Indexed: 10/16/2022] Open
Abstract
Avian coccidiosis is caused by genus Eimeria (E.) i.e. E. maxima, E. necatrix, E. tenella, E. acervulina, E. brunette and E. mitis and lead to three billion US dollar per year economic loss in poultry industry and reduces the growth performance of birds. To purge undesirable foreign agents, immune system produces a variety of molecules and cells that ultimately neutralize target particles in healthy organisms. However; when this particular system compromises, infection develops and the load of pathogens along with their virulence factors overcome both; innate and adaptive immune systems. Livestock and poultry sectors are important part of agriculture industry worldwide. Due to excessive use of chemotherapeutic agents, pathogens have developed resistance against these agents leading to the great economic losses. Numerous therapeutic approaches are in routine process for the treatment and prevention of various ailments but irrational use of antibiotics/chemicals has raised alarming concerns, like the development of drug resistant strains, residual effects in ultimate users and environmental pollution. These problems have led to the development of alternatives. In this regard, anticoccidial vaccine can be used as an alternative but due to high cost of production, plant derived biological response modifiers and antioxidants compounds are considered as a promising alternative. This review summarizes the immunotherapeutic effects of different compounds particularly with reference to avian coccidiosis.
Collapse
Affiliation(s)
| | - Muhammad Kasib Khan
- Department of Parasitology, University of Agriculture, Faisalabad, 38040 Pakistan
| | | | - Zaheer Abbas
- Department of Parasitology, University of Agriculture, Faisalabad, 38040 Pakistan
| | - Rao Zahid Abbas
- Department of Parasitology, University of Agriculture, Faisalabad, 38040 Pakistan
| | - Zia ud Din Sindhu
- Department of Parasitology, University of Agriculture, Faisalabad, 38040 Pakistan
| | | | - Qurat ul Ain
- Health Officer in Agriculture, Food and Rural Development, Winnipeg, Manitoba Canada
| | - Asghar Abbas
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Sharif University of Agriculture, Multan, Pakistan
| | - Arsalan Zafar
- Department of Parasitology, University of Agriculture, Faisalabad, 38040 Pakistan
| | - Muhammad Imran
- Department of Parasitology, University of Agriculture, Faisalabad, 38040 Pakistan
| | - Amjad Islam Aqib
- Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Muhammad Nadeem
- Department of Parasitology, University of Agriculture, Faisalabad, 38040 Pakistan
| |
Collapse
|
4
|
Han M, Hu W, Chen T, Guo H, Zhu J, Chen F. Anticoccidial activity of natural plants extracts mixture against Eimeria tenella: An in vitro and in vivo study. Front Vet Sci 2022; 9:1066543. [PMID: 36504841 PMCID: PMC9727100 DOI: 10.3389/fvets.2022.1066543] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/03/2022] [Indexed: 11/24/2022] Open
Abstract
Coccidiosis, an acute epidemic intestinal disease of poultry, is caused by the parasitic protozoan genus Eimeria, with Eimeria tenella being the most pathogenic spp. Novel approaches are required to address the limitations of current treatments for this disease. We investigated the effects of eight plant extracts and essential oils and their mixture on Eimeria tenella as potential treatments for coccidial infection. The anticoccidial effects of non-toxic concentrations of Punica granatum L. (0.005 mg/mL), Plantago asiatica L. (0.780 mg/mL), Bidens pilosa L. (0.390 mg/mL), Acalypha australis L. (0.390 mg/mL), Pteris multifida Poir (0.050 mg/mL), and Portulaca oleracea L. sp. Pl. (0.050 mg/mL) extracts; Artemisia argyi Levl. et Vant. (0.010 μL/mL) and Camellia sinensis (L.) O. Ktze (0.050 μL/mL) essential oils; and their mixture (0.500 mL/mL) on Eimeria tenella were determined using cell viability assays, flow cytometry, and in vivo studies. The eight plant extracts and essential oils and their mixture inhibited Eimeria tenella sporozoites from invading chicken embryo fibroblast cells in vitro. The extract and essential oil mixture improved the feed conversion ratio and body weight gain, reduced fecal oocyst excretion, substantially reduced the mortality of Eimeria tenella-infected chickens, and reduced Eimeria tenella-induced cecal damage in vivo. The results suggest that the extract and essential oil mixtures inhibit Eimeria tenella invasion both in vitro and in vivo, demonstrating their potential as anticoccidial agents.
Collapse
Affiliation(s)
- Mingzheng Han
- College of Animal Science, South China Agricultural University, Guangzhou, China,Bioforte Biotechnology (Shenzhen) Co., Ltd., Shenzhen, China,Research Institute, Wen's Foodstuffs Group Co., Ltd., Yunfu, China
| | - Wenfeng Hu
- College of Animal Science, South China Agricultural University, Guangzhou, China,Research Institute, Wen's Foodstuffs Group Co., Ltd., Yunfu, China,College of Food Science, South China Agricultural University, Guangzhou, China
| | - Tong Chen
- Bioforte Biotechnology (Shenzhen) Co., Ltd., Shenzhen, China,Research Institute, Wen's Foodstuffs Group Co., Ltd., Yunfu, China
| | - Hanxing Guo
- Bioforte Biotechnology (Shenzhen) Co., Ltd., Shenzhen, China,Research Institute, Wen's Foodstuffs Group Co., Ltd., Yunfu, China,College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jianfeng Zhu
- Bioforte Biotechnology (Shenzhen) Co., Ltd., Shenzhen, China,Research Institute, Wen's Foodstuffs Group Co., Ltd., Yunfu, China
| | - Feng Chen
- College of Animal Science, South China Agricultural University, Guangzhou, China,Bioforte Biotechnology (Shenzhen) Co., Ltd., Shenzhen, China,Research Institute, Wen's Foodstuffs Group Co., Ltd., Yunfu, China,*Correspondence: Feng Chen
| |
Collapse
|
5
|
Protective Effect of Litchi chinensis Peel Extract-Prepared Nanoparticles on Rabbits Experimentally Infected with Eimeria stiedae. Animals (Basel) 2022; 12:ani12223098. [PMID: 36428326 PMCID: PMC9686865 DOI: 10.3390/ani12223098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
The present study used Litchi chinensis peel extract to synthesize silver nanoparticles (AgNPs). This technique is eco-friendly and can be performed in a single step; thus, it has attracted great attention for NPs biosynthesis. Herein, we biosynthesized AgNPs with L. chinensis peel extract and examined their anticoccidial activity in rabbit hepatic coccidiosis induced by E. stiedae infection. Thirty-five rabbits were allocated into seven groups: a healthy group (G1), an infected control group (G2), four groups infected before treatment with 10 mg/kg L. chinensis peel extract-biosynthesized AgNPs (G3, G5) or 50 mg/kg amprolium (G4, G6), and rabbits infected after two weeks of pretreatment with 10 mg/kg L. chinensis eel extract-biosynthesized AgNPs (G7). In this study, both pre-and post-treatment with AgNPs produced a substantial reduction in fecal oocyst output, liver enzyme levels, and histopathological hepatic lesions relative to the infected group. In conclusion, L. chinensis peel extract-prepared AgNPs should be considered harmless and efficient in the cure of hepatic coccidiosis in rabbits.
Collapse
|
6
|
Yuan J, Liu R, Sheng S, Fu H, Wang X. Integrated metabolomic and transcriptomic profiling revealed coping mechanisms of the edible and medicinal homologous plant Plantago asiatica L. cadmium resistance. Open Life Sci 2022. [DOI: 10.1515/biol-2022-0501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Rapidly increasing cadmium (Cd) pollution led to the increase in contamination in farmland. The study explained the Cd resistance mechanisms of Plantago asiatica L. via physiological, metabolomic, and transcriptomic analyses. The results showed that as soil Cd level increased, proline content declined and then increased significantly. In contrast to the H2O2 content change trend, contents of soluble protein and malondialdehyde (MDA) first decreased, then increased, and finally, declined. Leaf Cd concentration was positively related to soluble protein content and negatively to both MDA content and activities of superoxide dismutase (SOD) and catalase (CAT). Most of the top 50 differential metabolites belonged to organic acids and sugars. Besides combining metabolome and transcriptome data, in the metabolic network involving the target metabolic pathways (e.g., ascorbate and aldarate metabolism, glutathione metabolism, galactose metabolism, and glyoxylate and dicarboxylate metabolism), dehydroascorbate (DHA), regulated by l-ascorbate peroxidase (APX) and l-gulonolactone oxidase (GULO), was significantly up-regulated. This illuminated that, in P. asiatica, CAT and SOD played vital roles in Cd resistance, and soluble protein and MDA acted as the main indexes to characterize Cd damage. It also suggested that DHA functioned effectively in Cd resistance, and the function was regulated by APX and GULO.
Collapse
Affiliation(s)
- Jun Yuan
- School of Nursing, Jiangxi University of Chinese Medicine , Nanchang 330004 , China
| | - Rongpeng Liu
- School of Pharmacy, Jiangxi University of Chinese Medicine , Nanchang 330004 , China
| | - Shasha Sheng
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine , Nanchang 330004 , China
| | - Haihui Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University , Nanchang 330045 , China
| | - Xiaoyun Wang
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine , Nanchang 330004 , China
| |
Collapse
|
7
|
Mohammed LS, Sallam EA, El basuni SS, Eldiarby AS, Soliman MM, Aboelenin SM, Shehata SF. Ameliorative Effect of Neem Leaf and Pomegranate Peel Extracts in Coccidial Infections in New Zealand and V-Line Rabbits: Performance, Intestinal Health, Oocyst Shedding, Carcass Traits, and Effect on Economic Measures. Animals (Basel) 2021; 11:ani11082441. [PMID: 34438898 PMCID: PMC8388781 DOI: 10.3390/ani11082441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 01/13/2023] Open
Abstract
Healthy, weaned, coccidial-free male rabbits from two breeds (New Zealand white (NZ) and V-line (VL)) were divided into 10 equal groups (5 groups each for NZ and VL) (3 replicates/group, 6 rabbits/replicate, 18 rabbits/group). All rabbits were inoculated with 5 × 104 Eimeria spp. oocysts (E. intestinalis (67%), E. magna (22%), and E. media (11%)) except for the rabbits in the first group (G1), which were inoculated with a sterile solution and served as a negative control. The remaining four groups were treated as follows: G2, no treatment/positive control, G3, treated with neem leaf extract, G4, treated with pomegranate peel extract (PPE), and G5, treated with a combination of neem leaf extract and PPE. For both breeds, our results showed that the use of neem leaf and/or pomegranate peel extract resulted in improved growth performance, with a significant improvement in relative feed conversion ratio (FCR) compared to the positive control groups, which recorded the worst values, as well as a significant (p ≤ 0.05) reduction in mean oocyst count compared to the positive control groups. We also observed downregulation of mRNA levels of IL-1βα, IL6, and TNF-α in the herbal treatment groups compared with the mRNA levels of these genes in the positive control groups. Herbal treatment with neem leaf and/or pomegranate peel extracts had positive effects on the NZ and VL rabbits experimentally infected with mixed Eimeria species, as evidenced by their healthy appearance, good appetite, no mortalities, an anticoccidial index > 120, and a significantly higher total return and net profit when compared to the positive control groups of both breeds. In NZ rabbits, the treatment with neem leaf extract alone (G3) or in combination with PPE (G5) recorded the most efficient economic anticoccidial activity.
Collapse
Affiliation(s)
- Liza S. Mohammed
- Veterinary Economics and Farm Management, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt;
- Correspondence:
| | - Eman A. Sallam
- Animal and Poultry Production, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt;
| | - Sawsan S. El basuni
- Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt;
| | - Amany S. Eldiarby
- Parasitology Department, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt;
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Salama Mostafa Aboelenin
- Biology Department, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Seham F. Shehata
- Veterinary Economics and Farm Management, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt;
| |
Collapse
|
8
|
Response of plantain (Plantago lanceolata L.) supplementation on nutritional, endo-parasitic, and endocrine status in lambs. Trop Anim Health Prod 2021; 53:82. [PMID: 33411066 DOI: 10.1007/s11250-020-02514-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
The aim of the present study was to assess the effects of plantain herb (Plantago lanceolata L.) supplementation on growth, plasma metabolites, liver enzymatic activity, hormonal status, gastrointestinal parasites, and carcass characteristics of lambs. A total of 24 lambs, aged 6 months weighing 8.0 ± 0.5 kg were randomly allocated to one of two dietary treatments: (1) CL diet-roadside grass and concentrate mixture; (2) PL diet-CL diet + 5% fresh plantain supplementation on a DM basis. The PL diet group exhibited 23% higher (P = 0.01) average daily gain and 15% improved (P = 0.03) feed conversion efficiency. Circulating cholesterol concentrations were suppressed by 9% (P = 0.03), and liver enzyme activity was improved by 5-25% (P < 0.05) in the lamb fed PL diet, compared with CL diet only. The inclusion of plantain in the diet was highly effective at suppressing the parasites, Paramphistomum spp. (P = 0.003) and coccidial parasites (P = 0.04), but not stomach worms. Moreover, plantain supplementation increased growth hormone and insulin concentrations in plasma level, whereas decreased carcass fat by 32.7%. Therefore, supplementation of the lambs' diet with plantain showed some beneficial effects on productivity and parasitic infection, while it led to a leaner carcass.
Collapse
|