1
|
Side effects of treatment with busulfan at high doses in dogs. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2022. [DOI: 10.12750/jarb.37.2.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
2
|
Singh S, Kharche S, Pathak M, Soni Y, Pawaiya R, Quadri S, Singh M, Chauhan M. Establishment of effective and safe recipient preparation for germ-cell transplantation with intra-testicular busulfan treatment in pre-pubertal Barbari goats. Theriogenology 2022; 189:270-279. [DOI: 10.1016/j.theriogenology.2022.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/19/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022]
|
3
|
Jung H, Yoon M. Effects of intravenous multiple busulfan injection on suppression of endogenous spermatogenesis in recipient stallion testes. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:1194-1203. [PMID: 34796357 PMCID: PMC8564301 DOI: 10.5187/jast.2021.e80] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 01/15/2023]
Abstract
Preparation of recipient stallions is critical step to produce donor
spermatogonial stem cell (SSC) derived sperm using transplantation technique.
This study was conducted to evaluate the effects of intravenous busulfan
infusion on germ cell depletion, semen production, and libido in stallions. Six
Thoroughbred stallions were separated into two treatment groups: 1) a multiple
low-dose (2.5 mg/kg bw for the first 4 weeks and 5 mg/kg bw for the 5th week);
and 2) control group treated with PBS. Testicular samples were obtained at 11
weeks and classified into three different patterns of spermatogenesis, such as
normal, Sertoli cell only, and destroyed. Semen collection and libido
experiments were performed 1 week before treatment, and 4 and 8 weeks after
treatment. For the sperm analysis, total spermatozoa and motility were measured
using a light microscope with a motility analyzing system. In the multiple
low-dose group, the numbers of tubules categorized as Sertoli cell only were
significantly higher than those in the control as well as the total population
and total/progressive motility of sperm were significantly decreased 8 weeks
after the start of the treatment. The sperm production and motility in the
multiple low-dose group appears to be reduced, while libido was maintained. In
conclusion, multiple administration of 2.5 mg/kg bw busulfan depletes endogenous
germ cells in the stallion recipients for SSC transplantation.
Collapse
Affiliation(s)
- Heejun Jung
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Korea
| | - Minjung Yoon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224, Korea.,Department of Horse, Companion, and Wild Animal Science, Kyungpook National University, Sangju 37224, Korea
| |
Collapse
|
4
|
Chanut FJA, Sanvito F, Ferrari G, Visigalli I, Carriglio N, Hernandez RJ, Norata R, Doglioni C, Naldini L, Cristofori P. Conditioning Regimens in Long-Term Pre-Clinical Studies to Support Development of Ex Vivo Gene Therapy: Review of Nonproliferative and Proliferative Changes. Hum Gene Ther 2020; 32:66-76. [PMID: 32883113 DOI: 10.1089/hum.2020.135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hematopoietic stem cell gene therapy has become a successful therapeutic strategy for some inherited genetic disorders. Pre-clinical toxicity studies performed to support the human clinical trials using viral-mediated gene transfer and autologous hematopoietic stem and progenitor cell (HSPC) transplantation are complex and the use of mouse models of human diseases makes interpretation of the results challenging. In addition, they rely on the use of conditioning agents that must induce enough myeloablation to allow engraftment of transduced and transplanted HSPC. Busulfan and total body irradiation (TBI) are the most commonly used conditioning regimens in the mouse. Lenticular degeneration and atrophy of reproductive organs are expected histopathological changes. Proliferative and nonproliferative lesions can be observed with different incidence and distribution across strains and mouse models of diseases. The occurrence of these lesions can interfere with the interpretation of pre-clinical toxicity and tumorigenicity studies performed to support the human clinical studies. As such, it is important to be aware of the background incidence of lesions induced by different conditioning regimens. We review the histopathology results from seven long-term studies, five using TBI and two using busulfan.
Collapse
Affiliation(s)
- Franck J A Chanut
- Formerly GSK David Jack Centre for R&D, Ware, United Kingdom, Currently SANOFI, Alfortville, France
| | - Francesca Sanvito
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Pathology Unit, Division of Experimental Oncology, IRCCS San Raffaele Hospital, Milan, Italy
| | - Giuliana Ferrari
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy; and
| | - Ilaria Visigalli
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nicola Carriglio
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Raisa Jofra Hernandez
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rossana Norata
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudio Doglioni
- Pathology Unit, Division of Experimental Oncology, IRCCS San Raffaele Hospital, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy; and
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy; and
| | - Patrizia Cristofori
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy.,GSK David Jack Centre for R&D, Ware, United Kingdom
| |
Collapse
|
5
|
Moraveji SF, Esfandiari F, Taleahmad S, Nikeghbalian S, Sayahpour FA, Masoudi NS, Shahverdi A, Baharvand H. Suppression of transforming growth factor-beta signaling enhances spermatogonial proliferation and spermatogenesis recovery following chemotherapy. Hum Reprod 2019; 34:2430-2442. [DOI: 10.1093/humrep/dez196] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 07/29/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
STUDY QUESTION
Could small molecules (SM) which target (or modify) signaling pathways lead to increased proliferation of undifferentiated spermatogonia following chemotherapy?
SUMMARY ANSWER
Inhibition of transforming growth factor-beta (TGFb) signaling by SM can enhance the proliferation of undifferentiated spermatogonia and spermatogenesis recovery following chemotherapy.
WHAT IS KNOWN ALREADY
Spermatogonial stem cells (SSCs) hold great promise for fertility preservation in prepubertal boys diagnosed with cancer. However, the low number of SSCs limits their clinical applications. SM are chemically synthesized molecules that diffuse across the cell membrane to specifically target proteins involved in signaling pathways, and studies have reported their ability to increase the proliferation or differentiation of germ cells.
STUDY DESIGN, SIZE, DURATION
In our experimental study, spermatogonia were collected from four brain-dead individuals and used for SM screening in vitro. For in vivo assessments, busulfan-treated mice were treated with the selected SM (or vehicle, the control) and assayed after 2 (three mice per group) and 5 weeks (two mice per group).
PARTICIPANTS/MATERIALS, SETTING, METHODS
We investigated the effect of six SM on the proliferation of human undifferentiated spermatogonia in vitro using a top–bottom approach for screening. We used histological, hormonal and gene-expression analyses to assess the effect of selected SM on mouse spermatogenesis. All experiments were performed at least in triplicate and were statistically evaluated by Student’s t-test and/or one-way ANOVA followed by Scheffe’s or Tukey’s post-hoc.
MAIN RESULTS AND THE ROLE OF CHANCE
We found that administration of SB431542, as a specific inhibitor of the TGFb1 receptor (TGFbR1), leads to a two-fold increase in mouse and human undifferentiated spermatogonia proliferation. Furthermore, injection of SB to busulfan-treated mice accelerated spermatogenesis recovery as revealed by increased testicular size, weight and serum level of inhibin B. Moreover, SB administration accelerated both the onset and completion of spermatogenesis. We demonstrated that SB promotes proliferation in testicular tissue by regulating the cyclin-dependent kinase (CDK) inhibitors 4Ebp1 and P57 (proliferation inhibitor genes) and up-regulating Cdc25a and Cdk4 (cell cycle promoting genes).
LIMITATIONS, REASONS FOR CAUTION
The availability of human testis was the main limitation in this study.
WIDER IMPLICATIONS OF THE FINDINGS
This is the first study to report acceleration of spermatogenesis recovery following chemotherapy by administration of a single SM. Our findings suggest that SB is a promising SM and should be assessed in future clinical trials for preservation of fertility in men diagnosed with cancer or in certain infertility cases (e.g. oligospermia).
STUDY FUNDING/COMPETING INTEREST(S)
This study was supported by Royan Institute and National Institute for Medical Research Development (NIMAD, grant no 963337) granted to H.B. The authors have no conflict of interest to report.
Collapse
Affiliation(s)
- Seyedeh-Faezeh Moraveji
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fereshteh Esfandiari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sara Taleahmad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Saman Nikeghbalian
- Shiraz Transplant Center, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Forough-Azam Sayahpour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Najmeh-Sadat Masoudi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| |
Collapse
|
6
|
Qu N, Itoh M, Sakabe K. Effects of Chemotherapy and Radiotherapy on Spermatogenesis: The Role of Testicular Immunology. Int J Mol Sci 2019; 20:E957. [PMID: 30813253 PMCID: PMC6413003 DOI: 10.3390/ijms20040957] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 02/06/2023] Open
Abstract
Substantial improvements in cancer treatment have resulted in longer survival and increased quality of life in cancer survivors with minimized long-term toxicity. However, infertility and gonadal dysfunction continue to be recognized as adverse effects of anticancer therapy. In particular, alkylating agents and irradiation induce testicular damage that results in prolonged azoospermia. Although damage to and recovery of spermatogenesis after cancer treatment have been extensively studied, there is little information regarding the role of differences in testicular immunology in cancer treatment-induced male infertility. In this review, we briefly summarize available rodent and human data on immunological differences in chemotherapy or radiotherapy.
Collapse
Affiliation(s)
- Ning Qu
- Department of Anatomy, Division of Basic Medical Science, Tokai University School of Medicine, Kanagawa 259-1193, Japan.
- Department of Anatomy, Tokyo Medical University, Tokyo 160-8402, Japan.
| | - Masahiro Itoh
- Department of Anatomy, Tokyo Medical University, Tokyo 160-8402, Japan.
| | - Kou Sakabe
- Department of Anatomy, Division of Basic Medical Science, Tokai University School of Medicine, Kanagawa 259-1193, Japan.
| |
Collapse
|