1
|
Inda A, Martinez S, Bessone C, Rios M, Guido M, Herrero-Vanrell R, Luna JD, Allemandi D, Ravetti S, Quinteros D. Evidence of the protective role of Carvacrol in a retinal degeneration animal model. Exp Eye Res 2024; 244:109938. [PMID: 38789020 DOI: 10.1016/j.exer.2024.109938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Neurodegenerative pathologies affecting the posterior segment of the eye, are characterized by being devastating and responsible for the majority of visual dysfunctions worldwide. These diseases are primarily degenerative, progressing chronically, and can inflict gradual harm to the optic nerve, retinal ganglion cells (RGC), photoreceptors, and other retinal cells. This retinal damage leads to a progressive loss of vision, marking these conditions as a significant health concern worldwide. The intravitreal administration of the phytochemical Carvacrol (CAR) is expected to demonstrate a neuroprotective and antiapoptotic effect on retinal cells, with a specific focus on RGC. This effect will be observed in a retinal degeneration model (RDM) in rabbits induced by cytotoxic and oxidative agents, namely glutamate (GLUT) and L-buthionine-S, R-sulfoximine (BSO). An in vivo study was conducted using New Zealand rabbits in which retinal damage was created to evaluate the effectiveness of CAR. The effectiveness of CAR on the functionality of retinal neuronal cells in RDM was evaluated using pupillary light reflection (PLR). Furthermore, the phytotherapeutic's influence on cell viability was determined through flow cytometry analysis. Finally, the neuroprotective and antiapoptotic capabilities of CAR were specifically scrutinized in RGC through histological studies, quantifying cell survival, and employing immunohistochemical assays to detect the apoptotic index (%) using the TUNEL technique. Our results demonstrated that CAR promoted the recovery of the pupillary contraction profile over time, maintaining the functionality of retinal cells as healthy controls. Additionally, it showed increased cell viability under oxidative and cytotoxic conditions given by GLUT-BSO agents. Finally, we found that CAR protects the survival of RGC and decreases the percentage of apoptotic cells when compared to RDM. CAR demonstrated to have positive effects on the functionality of photoreceptive nerve cells by restoring pupillary contraction. Likewise, it was shown to have neuroprotective and antiapoptotic effects when evaluated in a general and specific way on retinal nerve cells.
Collapse
Affiliation(s)
- Ayelen Inda
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET y Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina; Centro de Investigación y Transferencia (CIT VM), 5900, Villa María, Córdoba, Argentina
| | - Sofía Martinez
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET y Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Carolina Bessone
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET y Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina; Departamento de Ciencias Básicas, Escuela Ciencias de la Salud, Universidad Nacional de Villa Mercedes (UNVIME), 5730, Villa Mercedes, San Luis, Argentina
| | - Maximiliano Rios
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. 5000 Córdoba, Argentina
| | - Mario Guido
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. 5000 Córdoba, Argentina
| | - Rocío Herrero-Vanrell
- Grupo de Investigación en Innovación, Terapia y Desarrollo Farmacéutico en Oftalmología (UCM 920415), Departamento de Farmacia y Tecnología de Alimentos, Facultad de Farmacia. Universidad Complutense, 28040, Madrid, Spain
| | - Jose Domingo Luna
- Área de Cirugía Vítreo y Retina, Centro Privado de Ojos Romagosa S.A. y Fundación VER, 5000, Córdoba, Argentina
| | - Daniel Allemandi
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET y Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Soledad Ravetti
- Centro de Investigación y Transferencia (CIT VM), 5900, Villa María, Córdoba, Argentina; Instituto Académico Pedagógico de Ciencias Humanas, Universidad Nacional de Villa María, 5900, Villa María, Córdoba, Argentina
| | - Daniela Quinteros
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET y Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina.
| |
Collapse
|
2
|
Rambo MKD, Lins RF, Silva FLN, Alonso A, Rambo MCD, Leal JEC, Sousa-Neto DD. Effect of cationic surfactant on the physicochemical and antibacterial properties of colloidal systems (emulsions and microemulsions). BRAZ J BIOL 2024; 84:e278013. [PMID: 38422288 DOI: 10.1590/1519-6984.278013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/12/2024] [Indexed: 03/02/2024] Open
Abstract
Colloidal systems have been used to encapsulate, protect and release essential oils in mouthwashes. In this study, we investigated the effect of cetylpyridinium chloride (CPC) on the physicochemical properties and antimicrobial activity of oil-in-water colloidal systems containing tea tree oil (TTO) and the nonionic surfactant polysorbate 80. Our main aim was to evaluate whether CPC could improve the antimicrobial activity of TTO, since this activity is impaired when this essential oil is encapsulated with polysorbate 80. These systems were prepared with different amounts of TTO (0-0.5% w/w) and CPC (0-0.5% w/w), at a final concentration of 2% (w/w) polysorbate 80. Dynamic light scattering (DLS) results revealed the formation of oil-swollen micelles and oil droplets as a function of TTO concentration. Increases in CPC concentrations led to a reduction of around 88% in the mean diameter of oil-swollen micelles. Although this variation was of only 20% for the oil droplets, the samples appearance changed from turbid to transparent. The surface charge of colloidal structures was also markedly affected by the CPC as demonstrated by the transition in zeta potential from slightly negative to highly positive values. Electron paramagnetic resonance (EPR) studies showed that this transition is followed by significant increases in the fluidity of surfactant monolayer of both colloidal structures. The antimicrobial activity of colloidal systems was tested against a Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureaus) bacteria. Our results revealed that the inhibition of bacterial growth is observed for the same CPC concentration (0.05% w/w for E. coli and 0.3% w/w for S. aureus) regardless of TTO content. These findings suggest that TTO may not act as an active ingredient in polysorbate 80 containing mouthwashes.
Collapse
Affiliation(s)
- M K D Rambo
- Universidade Federal do Tocantins - UFT, Laboratório de Química, Programa de Pós-graduação em Ciências do Ambiente - Ciamb, Palmas, TO, Brasil
| | - R F Lins
- Universidade Federal do Norte do Tocantins - UFNT, Colegiado de Química, Araguaína, TO, Brasil
| | - F L N Silva
- Universidade Federal do Norte do Tocantins - UFNT, Colegiado de Química, Araguaína, TO, Brasil
| | - A Alonso
- Universidade Federal de Goiás - UFG, Instituto de Física, Goiânia, GO, Brasil
| | - M C D Rambo
- Instituto de Educação, Ciência e Tecnologia do Tocantins - IFTO, Colegiado de Matemática, Palmas, TO, Brasil
| | - J E C Leal
- Instituto de Educação, Ciência e Tecnologia do Tocantins - IFTO, Colegiado de Agronegócio, Palmas, TO, Brasil
| | - D de Sousa-Neto
- Universidade Federal do Norte do Tocantins - UFNT, Faculdade de Ciências da Saúde, Araguaína, TO, Brasil
| |
Collapse
|
3
|
Ait-Touchente Z, Zine N, Jaffrezic-Renault N, Errachid A, Lebaz N, Fessi H, Elaissari A. Exploring the Versatility of Microemulsions in Cutaneous Drug Delivery: Opportunities and Challenges. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101688. [PMID: 37242104 DOI: 10.3390/nano13101688] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Microemulsions are novel drug delivery systems that have garnered significant attention in the pharmaceutical research field. These systems possess several desirable characteristics, such as transparency and thermodynamic stability, which make them suitable for delivering both hydrophilic and hydrophobic drugs. In this comprehensive review, we aim to explore different aspects related to the formulation, characterization, and applications of microemulsions, with a particular emphasis on their potential for cutaneous drug delivery. Microemulsions have shown great promise in overcoming bioavailability concerns and enabling sustained drug delivery. Thus, it is crucial to have a thorough understanding of their formulation and characterization in order to optimize their effectiveness and safety. This review will delve into the different types of microemulsions, their composition, and the factors that affect their stability. Furthermore, the potential of microemulsions as drug delivery systems for skin applications will be discussed. Overall, this review will provide valuable insights into the advantages of microemulsions as drug delivery systems and their potential for improving cutaneous drug delivery.
Collapse
Affiliation(s)
- Zouhair Ait-Touchente
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69100 Villeurbanne, France
| | - Nadia Zine
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69100 Villeurbanne, France
| | | | - Abdelhamid Errachid
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69100 Villeurbanne, France
| | - Noureddine Lebaz
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, LAGEPP UMR 5007, 69100 Villeurbanne, France
| | - Hatem Fessi
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, LAGEPP UMR 5007, 69100 Villeurbanne, France
| | - Abdelhamid Elaissari
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69100 Villeurbanne, France
| |
Collapse
|
4
|
Souza RLD, Dantas AGB, Melo CDO, Felício IM, Oliveira EE. Nanotechnology as a tool to improve the biological activity of carvacrol: A review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Preparation of water-in-oil (W/O) cinnamaldehyde microemulsion loaded with epsilon-polylysine and its antibacterial properties. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
6
|
Bahrami A, Delshadi R, Cacciotti I, Faridi Esfanjani A, Rezaei A, Tarhan O, Lee CC, Assadpour E, Tomas M, Vahapoglu B, Capanoglu Guven E, Williams L, Jafari SM. Targeting foodborne pathogens via surface-functionalized nano-antimicrobials. Adv Colloid Interface Sci 2022; 302:102622. [PMID: 35248971 DOI: 10.1016/j.cis.2022.102622] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 01/10/2023]
Abstract
The incorporation of antibiotics and bioactive compounds into non-toxic nanoparticles has been popularly used to produce effective antimicrobial nanocarriers against foodborne pathogens. These systems can protect antimicrobials against harsh environments, control their release, and increase their antimicrobial activities; however, their functions can be decreased by some major barriers. Intracellular localization of bacteria protects them from the host immune system and antimicrobial agents. Also, bacteria can cause constant infection by nestling in professional phagocytic cells. In the last years, surface functionalization of nanocarriers by passive and active modification methods has been applied for their protection against clearance from the blood, increasing both circulation time and uptake by target cells. For achieving this objective, different functional agents such as specifically targeted peptides internalize ligands, saccharide ligands, or even therapeutic molecules (e.g., antibodies or enzymes) are used. In this review, techniques for functionalizing the surface of antimicrobial-loaded nanocarriers have been described. This article offers a comprehensive review of the potential of functional nanoparticles to increase the performance of antimicrobials against foodborne pathogens through targeting delivery.
Collapse
|
7
|
Essential Oil Coating: Mediterranean Culinary Plants as Grain Protectants against Larvae and Adults of Tribolium castaneum and Trogoderma granarium. INSECTS 2022; 13:insects13020165. [PMID: 35206738 PMCID: PMC8874495 DOI: 10.3390/insects13020165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary The protection of stored agricultural products has been established as a global priority serving both food safety and security. Toxicity and residual issues of synthetic insecticides shifted the research focus towards natural pest control agents. In this context, six edible plants were selected for the conduction of a novel bioprospecting effort aiming to identify potential control agents against the red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) and the khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae). The proposed bioprospecting effort aims to identify the chemodiversity of essential oils (EOs) and exploit the potential of EO-based microemulsion (ME) coating as alternative tools for the management of the tested stored-product insects and the concomitant postharvest losses. Elevated toxicity was recorded against T. castaneum larvae and T. granarium adults. The fact that these EO-based MEs originate from culinary plants renders them safe for human consumption. The present study pioneers the utilization of EO-based MEs as grain protectants in the form of grain coating. Abstract Postharvest agricultural losses constitute a major food security risk. In contrast, postharvest protection is strongly linked with food safety. The present study aims to develop novel postharvest protection tools through a bioprospecting protocol utilizing edible essential oils (EOs) as grain coatings. For this purpose, six Mediterranean culinary plants were selected for evaluation. The EOs of juniper, Juniperus phoenicea L. (Pinales: Cupressaceae), marjoram, Origanum majorana L. (Lamiales: Lamiaceae), oregano, Origanum vulgare ssp. hirtum (Link) A.Terracc. (Lamiales: Lamiaceae), bay laurel, Laurus nobilis L. (Laurales: Lauraceae) and tarhan, Echinophora tenuifolia ssp. sibthorpiana (Guss.) Tutin (Apiales: Apiaceae) were retrieved through steam distillation, while lemon, Citrus limon (L.) Osbeck (Sapindales: Rutaceae) EO was retrieved through cold press extraction. All EOs were formulated to microemulsions (MEs) and applied uniformly as a coating on wheat against larvae and adults of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) and Trogoderma granarium Everts (Coleoptera: Dermestidae). All EO-based MEs have been evaluated for the first time as grain coatings. They caused moderate to high mortality to T. castaneum larvae (67.8–93.3% 14 days post-exposure) and T. granarium adults (70.0–87.8% after 7 days of exposure). Citrus limon, O. majorana and E. tenuifolia ssp. sibthorpiana EO-based MEs were the most efficient against T. castaneum larvae, by exhibiting 93.3%, 91.1% and 90.0% mortality 14 days post-exposure, respectively. Origanum majorana, L. nobilis and J. phoenicea EO-based MEs were the most efficient against T. granarium adults, exhibiting 87.8%, 84.4% and 83.3% mortality after 7 days of exposure, respectively. These results indicate that EO-based ME coating is a potent tool against the tested postharvest pests.
Collapse
|
8
|
|
9
|
Laothaweerungsawat N, Neimkhum W, Anuchapreeda S, Sirithunyalug J, Chaiyana W. Transdermal delivery enhancement of carvacrol from Origanum vulgare L. essential oil by microemulsion. Int J Pharm 2020; 579:119052. [DOI: 10.1016/j.ijpharm.2020.119052] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/23/2019] [Accepted: 01/15/2020] [Indexed: 12/15/2022]
|
10
|
Ayres Cacciatore F, Dalmás M, Maders C, Ataíde Isaía H, Brandelli A, da Silva Malheiros P. Carvacrol encapsulation into nanostructures: Characterization and antimicrobial activity against foodborne pathogens adhered to stainless steel. Food Res Int 2020; 133:109143. [PMID: 32466924 DOI: 10.1016/j.foodres.2020.109143] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 11/16/2022]
Abstract
Carvacrol is a natural antimicrobial capable of inhibiting several microorganisms. The encapsulation of this compound may increase its stability, water solubility and provide controlled release. In this study, carvacrol encapsulated into nanoliposomes (NLC) and polymeric Eudragit® nanocapsules (NCC) was tested against Staphylococcus aureus, Listeria monocytogenes, Escherichia coli and Salmonella spp. adhered to stainless steel. NLC showed an average diameter of 270.8 nm, zeta potential of +8.64 mV, and encapsulation efficiency of 98%. Minimum Bactericidal Concentration (MBC) of NLC was 3.53 mg/mL against Salmonella and 5.30 mg/mL against the other bacteria. NCC presented an average diameter of 159.3 nm, zeta potential of +44.8 mV, and encapsulation efficiency of 97%. MBC of NCC was 4.42 mg/mL against E. coli and 3.31 mg/mL against the other bacteria. After 2 h incubation with NCC at carvacrol concentration equivalent to ½ MBC, viable counts of Salmonella and E. coli were below the detection limit (1.69 CFU/mL). The population of L. monocytogenes and S. aureus was reduced by 2 log CFU/mL in 6 h. Afterwards, pools of each bacterium were separately adhered to stainless steel coupons (initial population 6.5 CFU/cm2). Salmonella and E. coli were inhibited below the detection limit using the NCC at concentration equivalent to MBC, while L. monocytogenes and S. aureus were reduced by 4 log CFU/cm2 and 3.5 log CFU/cm2, respectively. Although free carvacrol presented better results than encapsulated one in all tests performed, using encapsulated carvacrol could be more interesting for food applications by masking the strong aroma of the compound, in addition to a controlled release of carvacrol. The results suggest that NCC have potential for use in food contact surfaces in order to avoid bacterial adhesion and subsequent biofilm formation.
Collapse
Affiliation(s)
- Fabíola Ayres Cacciatore
- Laboratório de Higiene de Alimentos, Departamento de Ciência de Alimentos, Instituto de Ciências e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Brazil
| | - Michelle Dalmás
- Laboratório de Higiene de Alimentos, Departamento de Ciência de Alimentos, Instituto de Ciências e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Brazil
| | - Caroline Maders
- Laboratório de Higiene de Alimentos, Departamento de Ciência de Alimentos, Instituto de Ciências e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Brazil
| | - Henrique Ataíde Isaía
- Laboratório de Bioquímica e Microbiologia Aplicada, Departamento de Ciência de Alimentos, Instituto de Ciências e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Brazil
| | - Adriano Brandelli
- Laboratório de Bioquímica e Microbiologia Aplicada, Departamento de Ciência de Alimentos, Instituto de Ciências e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Brazil.
| | - Patrícia da Silva Malheiros
- Laboratório de Higiene de Alimentos, Departamento de Ciência de Alimentos, Instituto de Ciências e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Brazil
| |
Collapse
|
11
|
Park JB, Kang JH, Song KB. Clove bud essential oil emulsion containing benzethonium chloride inactivates Salmonella Typhimurium and Listeria monocytogenes on fresh-cut pak choi during modified atmosphere storage. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
12
|
Antimicrobial activity of PIT-fabricated cinnamon oil nanoemulsions: Effect of surfactant concentration on morphology of foodborne pathogens. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.11.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Surfactant type affects the washing effect of cinnamon leaf essential oil emulsion on kale leaves. Food Chem 2019; 271:122-128. [DOI: 10.1016/j.foodchem.2018.07.203] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/17/2018] [Accepted: 07/26/2018] [Indexed: 12/21/2022]
|
14
|
Ryu V, McClements DJ, Corradini MG, Yang JS, McLandsborough L. Natural antimicrobial delivery systems: Formulation, antimicrobial activity, and mechanism of action of quillaja saponin-stabilized carvacrol nanoemulsions. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.04.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Park JB, Kang JH, Song KB. Combined treatment of cinnamon bark oil emulsion washing and ultraviolet-C irradiation improves microbial safety of fresh-cut red chard. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.03.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
16
|
Kang JH, Song KB. Inhibitory effect of plant essential oil nanoemulsions against Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella Typhimurium on red mustard leaves. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2017.09.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Teixeira GFD, da Costa FN, Campos AR. Corneal antinociceptive effect of (-)-α-bisabolol. PHARMACEUTICAL BIOLOGY 2017; 55:1089-1092. [PMID: 28193100 PMCID: PMC6130487 DOI: 10.1080/13880209.2017.1285944] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
CONTEXT (-)-α-Bisabolol (BISA) is a sesquiterpene alcohol widely used as scent in cosmetic preparations, perfumes, shampoos, toilet soaps and other toiletries with potential for use in the pharmaceutical area. OBJECTIVE To evaluate the corneal antinociceptive efficacy of BISA and to analyze the best solubilizing agent. MATERIALS AND METHODS Acute corneal nociception was induced by the local application of hypertonic saline (5 M NaCl; 20 μL) to the corneal surface of Swiss mice (n = 8/group) 60 min after topical treatment with solutions or ointment containing BISA (50-200 mg/mL). The number of eye wipes performed with the ipsilateral forepaw was counted for a period of 30 s. Control groups (vehicles) were included. RESULTS BISA (50, 100 or 200 mg/mL) solubilized with Tween 80 did not reduce the number of eye wipes. Animals treated with the ointment (BISA 50, 100 or 200 mg/mL; p < 0.001), as well the solution containing propylene glycol (BISA 100 mg/mL; p < 0.05), showed significant reduction in the number of nociceptive behaviours. Solutions containing propylene glycol and isopropyl myristate had no effects. DISCUSSION AND CONCLUSION BISA possess corneal antinociceptive activity. Although the ointment presented antinociceptive effect, it is concluded that BISA when associated with propylene glycol has better potential for corneal nociceptive pain since it is more comfortable to use, leading to greater acceptance by patients.
Collapse
Affiliation(s)
- Gisele Façanha Diógenes Teixeira
- Experimental Biology Centre (Nubex), University of Fortaleza (Unifor), Ceará, Brazil
- School of Medicine, Christus University Centre (Unichristus), Ceará, Brazil
| | | | - Adriana Rolim Campos
- Experimental Biology Centre (Nubex), University of Fortaleza (Unifor), Ceará, Brazil
- CONTACT Adriana Rolim CamposUniversity of Fortaleza, Experimental Biology Centre (Nubex), Av. Washington Soares, 1321, Edson Queiroz, 60.811-905, Fortaleza, Ceará, Brazil
| |
Collapse
|
18
|
Van de Vel E, Sampers I, Raes K. A review on influencing factors on the minimum inhibitory concentration of essential oils. Crit Rev Food Sci Nutr 2017; 59:357-378. [PMID: 28853911 DOI: 10.1080/10408398.2017.1371112] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
With growing interest in essential oils as natural preservatives in the food industry, the literature is expanding enormously. To understand the antimicrobial activity of essential oils, the antimicrobial mechanism of individual essential oil (EO) compounds, and their minimum inhibitory concentrations (MICs), are interesting starting points for research. Therefore, and to get insight into the factors influencing their antimicrobial activities, the Web of Science was searched for MICs of EO compounds (1995-2016). Many MICs for individual EO compounds have already been reported in the literature, but there is large variability in these data, even for the MIC of the same compound against the same species. No correlation was found between the tested structural parameters of EO compounds (polarity, water solubility, dissociation constant, molecular weight and molecular complexity) and their MICs against all microorganisms, Gram-negative bacteria, Gram-positive bacteria and fungi. Few clear differences in sensitivity between microorganisms could be found. Based on this review it is clear that different incubation conditions, culture media and the use of emulsifiers/solvents have an influence on the MIC, causing big variance. This review points out the need for a good international standard method to assess the antimicrobial activity of EO compounds for better comparability between studies.
Collapse
Affiliation(s)
- Elien Van de Vel
- a Department of Industrial Biological Sciences, Laboratory of Food Microbiology and Biotechnology, Faculty of Bioscience Engineering , Ghent University Campus Kortrijk , Graaf Karel de Goedelaan 5, Kortrijk , Belgium
| | - Imca Sampers
- a Department of Industrial Biological Sciences, Laboratory of Food Microbiology and Biotechnology, Faculty of Bioscience Engineering , Ghent University Campus Kortrijk , Graaf Karel de Goedelaan 5, Kortrijk , Belgium
| | - Katleen Raes
- a Department of Industrial Biological Sciences, Laboratory of Food Microbiology and Biotechnology, Faculty of Bioscience Engineering , Ghent University Campus Kortrijk , Graaf Karel de Goedelaan 5, Kortrijk , Belgium
| |
Collapse
|
19
|
Franklyne JS, Mukherjee A, Chandrasekaran N. Essential oil micro- and nanoemulsions: promising roles in antimicrobial therapy targeting human pathogens. Lett Appl Microbiol 2016; 63:322-334. [PMID: 27542872 DOI: 10.1111/lam.12631] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 07/12/2016] [Accepted: 08/01/2016] [Indexed: 01/20/2023]
Abstract
Antimicrobial resistance is a major health concern worldwide. A narrowing of the antibiotic development pipeline and a resurgence in public opinion towards 'natural' therapies have renewed the interest in using essential oils as antimicrobial agents. The drawbacks of bulk dosing of essential oils can be mitigated by formulating them as micro- and nanoemulsions. These emulsions have an added advantage as they are in the nanometre size range whose thermodynamic properties enable them to be used as an effective drug delivery system. This review describes the current work on the antimicrobial activities of essential oil micro- and nanoemulsions and their role as drug delivery vehicles.
Collapse
Affiliation(s)
- J S Franklyne
- Centre for Nanobiotechnology, VIT University, Vellore, Tamil Nadu, India
| | - A Mukherjee
- Centre for Nanobiotechnology, VIT University, Vellore, Tamil Nadu, India
| | - N Chandrasekaran
- Centre for Nanobiotechnology, VIT University, Vellore, Tamil Nadu, India.
| |
Collapse
|
20
|
El-Sayed HS, Chizzola R, Ramadan AA, Edris AE. Chemical composition and antimicrobial activity of garlic essential oils evaluated in organic solvent, emulsifying, and self-microemulsifying water based delivery systems. Food Chem 2016; 221:196-204. [PMID: 27979186 DOI: 10.1016/j.foodchem.2016.10.052] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/05/2016] [Accepted: 10/11/2016] [Indexed: 12/11/2022]
Abstract
The chemical composition of garlic essential oils (GEOs) extracted from two different cultivars has been characterized using GC-MS analysis. GEO that was extracted from the white-skin cultivar (WGO) had a lower percentage of the major constituents diallyl trisulfide and diallyl disulfide (45.76 and 15.63%) than purple-skin cultivar (PGO) which contained higher percentages (58.53 and 22.38%) of the same components, respectively. Evaluation of the antimicrobial activity of WGO and PGO delivered in organic solvent (isopropanol) showed dose-dependent antimicrobial activity against the tested pathogenic bacteria and fungi, especially with WGO. On the other hand, formulation of both GEOs in water-based emulsions totally suppressed the antimicrobial activity of GEO. Re-formulation of GEOs in water-based microemulsion (particle size 10.1nm) showed better antimicrobial activity than emulsions at the same concentration of GEOs. This study can assist in designing the proper water-based delivery system of GEO for application in food preservation.
Collapse
Affiliation(s)
| | | | - Asmaa A Ramadan
- Food Sciences and Nutrition Department, National Research Centre, Cairo, Egypt
| | - Amr E Edris
- Aroma & Flavor Chemistry Department, National Research Centre, Cairo, Egypt.
| |
Collapse
|
21
|
Antimicrobial properties of microemulsions formulated with essential oils, soybean oil, and Tween 80. Int J Food Microbiol 2016; 226:20-5. [DOI: 10.1016/j.ijfoodmicro.2016.03.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/11/2016] [Accepted: 03/13/2016] [Indexed: 12/18/2022]
|
22
|
Li J, Fan T, Xu Y, Wu X. Ionic liquids as modulators of physicochemical properties and nanostructures of sodium dodecyl sulfate in aqueous solutions and potential application in pesticide microemulsions. Phys Chem Chem Phys 2016; 18:29797-29807. [DOI: 10.1039/c6cp04722j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The change of morphology of ILs/SDS aggregates with increased concentration of ILs.
Collapse
Affiliation(s)
- Jing Li
- College of Science
- China Agricultural University
- China
| | - Tengfei Fan
- College of Resources and Environmental Sciences
- China Agricultural University
- China
| | - Yong Xu
- College of Science
- China Agricultural University
- China
| | - Xuemin Wu
- College of Science
- China Agricultural University
- China
| |
Collapse
|