1
|
Sun X, Yu L, Xiao M, Zhang C, Zhao J, Narbad A, Chen W, Zhai Q, Tian F. Exploring Core fermentation microorganisms, flavor compounds, and metabolic pathways in fermented Rice and wheat foods. Food Chem 2025; 463:141019. [PMID: 39243605 DOI: 10.1016/j.foodchem.2024.141019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/09/2024]
Abstract
The unique flavors of fermented foods significantly influence consumer purchasing choices, prompting widespread scientific interest in the flavor development process. Fermented rice and wheat foods are known for their unique flavors and they occupy an important place in the global diet. Many of these are produced on an industrial scale using starter cultures, whereas others rely on spontaneous fermentation, homemade production, or traditional activities. Microorganisms are key in shaping the sensory properties of fermented products through different metabolic pathways, thus earning the title "the essence of fermentation." Therefore, this study systematically summarizes the key microbial communities and their interactions that contribute positively to iconic fermented rice and wheat foods, such as steamed bread, bread, Mifen, and rice wine. This study revealed the mechanism by which these core microbial communities affect flavor and revealed the strategies of core microorganisms and related enzymes to enhance flavor during fermentation.
Collapse
Affiliation(s)
- Xiaoxuan Sun
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Meifang Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chengcheng Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianxing Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Arjan Narbad
- Quadram Institute Bioscience, Norwich Research Park Colney, Norwich, Norfolk NR4 7UA, UK
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
2
|
Liu R, Geng Z, Li T, Zhang M, Zhang C, Ma T, Xu Z, Xu S, Liu H, Zhang X, Wang L. Effects of different extrusion temperatures on the physicochemical properties, edible quality and digestive attributes of multigrain reconstituted rice. Food Funct 2024; 15:6000-6014. [PMID: 38743003 DOI: 10.1039/d4fo00044g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Multigrain reconstituted rice, as a nutritious and convenient staple, holds considerable promise for the food industry. Furthermore, highland barley, corn, and other coarse cereals are distinguished by their low glycemic index (GI), rendering them effective in mitigating postprandial blood glucose levels, thereby underscoring their beneficial physiological impact. This study investigated the impact of extrusion temperature on the physicochemical properties, edible quality, and digestibility of multigrain reconstituted rice. The morphology revealed that starch particles that are not fully gelatinized in multigrain reconstituted rice are observed at an extrusion temperature range of 60 °C-90 °C. As the extrusion temperature increased, the degree of gelatinization (DG) increased, while the contents of water, protein, total starch, and amylopectin decreased substantially. Concurrently, the relative crystallinity, orderliness of starch, and heat absorption enthalpy (ΔH) decreased significantly, and water absorption (WAI) and water solubility (WSI) increased markedly. Regarding edible quality, sensory evaluation displayed an initial increase followed by a decrease. In terms of digestibility, the estimated glycemic index (eGI) increased from 61.10 to 70.81, and the GI increased from 60.41 to 75.33. In addition, the DG was significantly correlated with both eGI (r = 0.886**) and GI (r = 0.947**). The results indicated that the ideal extrusion temperature for multigrain reconstituted rice was 90 °C. The findings underscored the pivotal role of optimal extrusion temperatures in the production of multigrain reconstituted rice, which features low GI and high nutritional quality.
Collapse
Affiliation(s)
- Ruohai Liu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Zhanhui Geng
- Systems Engineering Institute, Academy of Military Sciences, Beijing 100141, China
| | - Ting Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Ming Zhang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Congnan Zhang
- Jiangsu Nongken Agricultural Development Co., Ltd, Hengshan Road 136, Nanjing 210019, China
| | - Tianjiao Ma
- Systems Engineering Institute, Academy of Military Sciences, Beijing 100141, China
| | - Zhicun Xu
- Jiangsu Nongken Agricultural Development Co., Ltd, Hengshan Road 136, Nanjing 210019, China
| | - Shunqian Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - He Liu
- Systems Engineering Institute, Academy of Military Sciences, Beijing 100141, China
| | - Xinxia Zhang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Li Wang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| |
Collapse
|
3
|
Yan X, McClements DJ, Luo S, Ye J, Liu C. A review of the effects of fermentation on the structure, properties, and application of cereal starch in foods. Crit Rev Food Sci Nutr 2024; 65:2323-2342. [PMID: 38532611 DOI: 10.1080/10408398.2024.2334269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Fermentation is one of the oldest food processing techniques known to humans and cereal fermentation is still widely used to create many types of foods and beverages. Starch is a major component of cereals and the changes in its structure and function during fermentation are of great importance for scientific research and industrial applications. This review summarizes the preparation of fermented cereals and the effects of fermentation on the structure, properties, and application of cereal starch in foods. The most important factors influencing cereal fermentation are pretreatment, starter culture, and fermentation conditions. Fermentation preferentially hydrolyzes the amorphous regions of starch and fermented starches have a coarser appearance and a smaller molecular weight. In addition, fermentation increases the starch gelatinization temperature and enthalpy and reduces the setback viscosity. This means that fermentation leads to a more stable and retrogradation-resistant structure, which could expand its application in products prone to staling during storage. Furthermore, fermented cereals have potential health benefits. This review may have important implications for the modulation of the quality and nutritional value of starch-based foods through fermentation.
Collapse
Affiliation(s)
- Xudong Yan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - David Julian McClements
- Biopolymers and Colloids Research Laboratory, Department of Food Science, University of Massachusetts Amherst, Amherst, MA, USA
| | - Shunjing Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Jiangping Ye
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Yang X, Yin J, Guo Y, Yu H, Yuan S, Qian H, Yao W, Song J. Ultrasound-Assisted Fermentation to Remove Cadmium from Rice and Its Application. Molecules 2023; 28:molecules28104127. [PMID: 37241867 DOI: 10.3390/molecules28104127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Rice, which is a major part of the daily diet, is becoming more and more contaminated by cadmium (Cd). This study combined low-intensity ultrasonic waves with the Lactobacillus plantarum fermentation method and optimized this technique by a single-factor and response surface experiment, aiming to solve the practical problems that the current Cd removal methods for rice cannot address, due to the fact that they require a long time (nearly 24 h), which prevents meeting the rice production demands. The described technique required a short time (10 h), and the highest Cd removal reached 67.05 ± 1.38%. Further analysis revealed that the maximum adsorption capacity of Lactobacillus plantarum for Cd increased by nearly 75%, and the equilibrium adsorption capacity increased by almost 30% after the ultrasonic intervention. Additionally, a sensory evaluation and other experiments proved that the properties of the rice noodles prepared from Cd-reduced rice obtained by ultrasound-assisted fermentation were comparable to those of traditional rice noodles, indicating that this method can be used in actual rice production.
Collapse
Affiliation(s)
- Xiaotong Yang
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jie Yin
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shaofeng Yuan
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jiangfeng Song
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
5
|
Jia Y, Zhang Z, Li M, Ji N, Qin Y, Wang Y, Shi R, Wang T, Xiong L, Sun Q. The effect of hydroxypropyl starch on the improvement of mechanical and cooking properties of rice noodles. Food Res Int 2022; 162:111922. [DOI: 10.1016/j.foodres.2022.111922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/08/2022] [Accepted: 09/07/2022] [Indexed: 11/04/2022]
|
6
|
Mudau M, Ramashia SE, Mashau ME. Mineral Content, Functional, Thermo-Pasting, and Microstructural Properties of Spontaneously Fermented Finger Millet Flours. Foods 2022; 11:foods11162474. [PMID: 36010473 PMCID: PMC9407397 DOI: 10.3390/foods11162474] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/10/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
Finger millet is a cereal grain which is superior to wheat and rice in terms of dietary fibre, minerals, and micronutrients. Fermentation is one of the oldest methods of food processing, and it has been used to ferment cereal grains such as finger millet (FM) for centuries. The aim of this study was to investigate the impact of spontaneous fermentation (SF) on mineral content, functional, thermo-pasting, and microstructural properties of light- and dark-brown FM flours. Spontaneous fermentation exhibited a significant increase in the macro-minerals and micro-minerals of FM flours. In terms of functional properties, SF decreased the packed bulk density and swelling capacity, and it increased the water/oil absorption capacity of both FM flours. Spontaneous fermentation had no effect on the cold paste viscosity of FM flours. However, significant decreases from 421.61 to 265.33 cP and 320.67 to 253.67 cP were observed in the cooked paste viscosity of light- and dark-brown FM flours, respectively. Moreover, SF induced alterations in the thermal properties of FM flours as increments in gelatinisation temperatures and gelatinisation enthalpy were observed. The results of pasting properties exhibited the low peak viscosities (1709.67 and 2695.67 cP), through viscosities (1349.67 and 2480.33 cP), and final viscosities (1616.33 and 2754.67 cP), along with high breakdown viscosities (360.00 and 215.33 cP) and setback viscosity (349.33 and 274.33 cP), of spontaneously fermented FM flours. Scanning electron microscopy showed that SF influenced changes in the microstructural properties of FM flours. The changes induced by SF in FM flours suggest that flours can be used in the food industry to produce weaning foods, jelly foods, and gluten-free products that are rich in minerals.
Collapse
|
7
|
Chemotyping of three Morchella species reveals species- and age-related aroma volatile biomarkers. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|