1
|
Kaspute G, Bareikiene E, Prentice U, Uzieliene I, Ramasauskaite D, Ivaskiene T. A Comprehensive Review of Advanced Diagnostic Techniques for Endometriosis: New Approaches to Improving Women's Well-Being. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1866. [PMID: 39597051 PMCID: PMC11596456 DOI: 10.3390/medicina60111866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
According to the World Health Organization (WHO), endometriosis affects roughly 10% (190 million) of reproductive-age women and girls in the world (2023). The diagnostic challenge in endometriosis lies in the limited value of clinical tools, making it crucial to address diagnostic complexities in patients with suggestive symptoms and inconclusive clinical or imaging findings. Saliva micro ribonucleic acid (miRNA) signature, nanotechnologies, and artificial intelligence (AI) have opened up new perspectives on endometriosis diagnosis. The aim of this article is to review innovations at the intersection of new technology and AI when diagnosing endometriosis. Aberrant epigenetic regulation, such as DNA methylation in endometriotic cells (ECs), is associated with the pathogenesis and development of endometriosis. By leveraging nano-sized sensors, biomarkers specific to endometriosis can be detected with high sensitivity and specificity. A chemotherapeutic agent with an LDL-like nano-emulsion targets rapidly dividing cells in patients with endometriosis. The developed sensor demonstrated effective carbohydrate antigen 19-9 detection within the normal physiological range. Researchers have developed magnetic iron oxide nanoparticles composed of iron oxide. As novel methods continue to emerge at the forefront of endometriosis diagnostic research, it becomes imperative to explore the impact of nanotechnology and AI on the development of innovative diagnostic solutions.
Collapse
Affiliation(s)
- Greta Kaspute
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (G.K.); (U.P.)
- State Research Institute Centre for Innovative Medicine, Santariskiu St. 5, LT-08410 Vilnius, Lithuania; (I.U.); (T.I.)
| | - Egle Bareikiene
- State Research Institute Centre for Innovative Medicine, Santariskiu St. 5, LT-08410 Vilnius, Lithuania; (I.U.); (T.I.)
| | - Urte Prentice
- Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania; (G.K.); (U.P.)
- State Research Institute Centre for Innovative Medicine, Santariskiu St. 5, LT-08410 Vilnius, Lithuania; (I.U.); (T.I.)
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko St. 24, LT-03225 Vilnius, Lithuania
| | - Ilona Uzieliene
- State Research Institute Centre for Innovative Medicine, Santariskiu St. 5, LT-08410 Vilnius, Lithuania; (I.U.); (T.I.)
| | - Diana Ramasauskaite
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio St. 21/27, LT-03101 Vilnius, Lithuania;
| | - Tatjana Ivaskiene
- State Research Institute Centre for Innovative Medicine, Santariskiu St. 5, LT-08410 Vilnius, Lithuania; (I.U.); (T.I.)
| |
Collapse
|
2
|
Chatzianagnosti S, Dermitzakis I, Theotokis P, Kousta E, Mastorakos G, Manthou ME. Application of Mesenchymal Stem Cells in Female Infertility Treatment: Protocols and Preliminary Results. Life (Basel) 2024; 14:1161. [PMID: 39337944 PMCID: PMC11433628 DOI: 10.3390/life14091161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Infertility is a global phenomenon that impacts people of both the male and the female sex; it is related to multiple factors affecting an individual's overall systemic health. Recently, investigators have been using mesenchymal stem cell (MSC) therapy for female-fertility-related disorders such as polycystic ovarian syndrome (PCOS), premature ovarian failure (POF), endometriosis, preeclampsia, and Asherman syndrome (AS). Studies have shown promising results, indicating that MSCs can enhance ovarian function and restore fertility for affected individuals. Due to their regenerative effects and their participation in several paracrine pathways, MSCs can improve the fertility outcome. However, their beneficial effects are dependent on the methodologies and materials used from isolation to reimplantation. In this review, we provide an overview of the protocols and methods used in applications of MSCs. Moreover, we summarize the findings of published preclinical studies on infertility treatments and discuss the multiple properties of these studies, depending on the isolation source of the MSCs used.
Collapse
Affiliation(s)
- Sofia Chatzianagnosti
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Iasonas Dermitzakis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eleni Kousta
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George Mastorakos
- Department of Endocrinology, Diabetes Mellitus and Metabolism, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
3
|
Kula H, Ilgen O, Kurt S, Yılmaz F. Patterns of proliferation and fibrosis in a rat model of endometriosis following administration of Allium cepa. Clin Exp Reprod Med 2024; 51:112-119. [PMID: 38263589 PMCID: PMC11140262 DOI: 10.5653/cerm.2023.06261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 01/25/2024] Open
Abstract
OBJECTIVE Endometriosis is a common gynecological disease among reproductive-age women. Numerous hypotheses exist regarding the pathogenesis of endometriosis. In Turkey, the consumption of Allium cepa (commonly known as the "onion cure") is a popular treatment employed to alleviate a variety of gynecological disorders. METHODS In this study, our objective was to assess the therapeutic mechanisms of the onion bulb A. cepa using an autologous endometriosis model in Sprague-Dawley rats. Previous research has shown that A. cepa possesses anti-inflammatory, antioxidant, and antiapoptotic properties. We evaluated the pathological condition of endometriotic implants by employing hematoxylin-eosin staining and Ki67 immunohistochemistry analysis. Transforming growth factor-beta 1 (TGF-β1) and alpha-smooth muscle actin (α-SMA) have been identified as profibrotic markers that are highly overexpressed in endometriotic tissues relative to eutopic endometrial tissue. Furthermore, TGF-β1 influences the differentiation and progression of endometriosis. To quantify profibrotic activity, we measured TGF-β1 and α-SMA using the immunosorbent assay method. RESULTS Lower histologic evaluation scores for endometriotic implants were observed in the group receiving high-dose A. cepa relative to the other groups. Ki67 expression was reduced following the high-dose A. cepa regimen, which consisted of 30% A. cepa and 70% normal feed. However, no statistically significant differences in TGF-β1 or α-SMA levels were observed among the groups (p=0.7 and p=0.778, respectively). CONCLUSION The findings suggest that A. cepa could serve as a therapeutic agent in endometriosis treatment, as evidenced by the reduction in proliferative potential. Nevertheless, A. cepa was not associated with significantly lower levels of endometriosis-associated TGF-β1 or α-SMA.
Collapse
Affiliation(s)
- Hakan Kula
- Department of Obstetrics and Gynecology, Dokuz Eylul University, Izmir, Turkey
| | - Orkun Ilgen
- Department of Obstetrics and Gynecology, Dokuz Eylul University, Izmir, Turkey
| | - Sefa Kurt
- Department of Obstetrics and Gynecology, Dokuz Eylul University, Izmir, Turkey
| | - Filiz Yılmaz
- Department of Histology and Embryology, Hitit University, Corum, Turkey
| |
Collapse
|
4
|
Sun T, Zhou C, Lu F, Dong Z, Gao J, Li B. Adipose-derived stem cells in immune-related skin disease: a review of current research and underlying mechanisms. Stem Cell Res Ther 2024; 15:37. [PMID: 38331803 PMCID: PMC10854049 DOI: 10.1186/s13287-023-03561-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 11/06/2023] [Indexed: 02/10/2024] Open
Abstract
Adipose-derived stem cells (ASCs) are a critical adult stem cell subpopulation and are widely utilized in the fields of regenerative medicine and stem cell research due to their abundance, ease of harvest, and low immunogenicity. ASCs, which are homologous with skin by nature, can treat immune-related skin diseases by promoting skin regeneration and conferring immunosuppressive effects, with the latter being the most important therapeutic mechanism. ASCs regulate the immune response by direct cell-cell communication with immune cells, such as T cells, macrophages, and B cells. In addition to cell-cell interactions, ASCs modulate the immune response indirectly by secreting cytokines, interleukins, growth factors, and extracellular vesicles. The immunomodulatory effects of ASCs have been exploited to treat many immune-related skin diseases with good therapeutic outcomes. This article reviews the mechanisms underlying the immunomodulatory effects of ASCs, as well as progress in research on immune-related skin diseases.
Collapse
Affiliation(s)
- Tianyi Sun
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Cheng Zhou
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Feng Lu
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Ziqing Dong
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Jianhua Gao
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China.
| | - Bin Li
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
5
|
Zheng X, Zhao D, Liu Y, Jin Y, Liu T, Li H, Liu D. Regeneration and anti-inflammatory effects of stem cells and their extracellular vesicles in gynecological diseases. Biomed Pharmacother 2023; 168:115739. [PMID: 37862976 DOI: 10.1016/j.biopha.2023.115739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023] Open
Abstract
There are many gynecological diseases, among which breast cancer (BC), cervical cancer (CC), endometriosis (EMs), and polycystic ovary syndrome (PCOS) are common and difficult to cure. Stem cells (SCs) are a focus of regenerative medicine. They are commonly used to treat organ damage and difficult diseases because of their potential for self-renewal and multidirectional differentiation. SCs are also commonly used for difficult-to-treat gynecological diseases because of their strong directional differentiation ability with unlimited possibilities, their tendency to adhere to the diseased tissue site, and their use as carriers for drug delivery. SCs can produce exosomes in a paracrine manner. Exosomes can be produced in large quantities and have the advantage of easy storage. Their safety and efficacy are superior to those of SCs, which have considerable potential in gynecological treatment, such as inhibiting endometrial senescence, promoting vascular reconstruction, and improving anti-inflammatory and immune functions. In this paper, we review the mechanisms of the regenerative and anti-inflammatory capacity of SCs and exosomes in incurable gynecological diseases and the current progress in their application in genetic engineering to provide a foundation for further research.
Collapse
Affiliation(s)
- Xu Zheng
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Dan Zhao
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130000, China
| | - Yang Liu
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130000, China
| | - Ye Jin
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Tianjia Liu
- Changchun University of Chinese Medicine, Changchun 130117, China; Baicheng Medical College, Baicheng 137000, China.
| | - Huijing Li
- Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Da Liu
- Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
6
|
Rizano A, Margiana R, Supardi S, Narulita P. Exploring the future potential of mesenchymal stem/stromal cells and their derivatives to support assisted reproductive technology for female infertility applications. Hum Cell 2023; 36:1604-1619. [PMID: 37407748 DOI: 10.1007/s13577-023-00941-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/16/2023] [Indexed: 07/07/2023]
Abstract
Women's infertility impacts the quality of life of both patients and couples and has multifaceted dimensions that increase the number of challenges associated with female infertility and how to face them. Female reproductive disorders, such as premature ovarian failure (POF), endometriosis, Asherman syndrome (AS), polycystic ovary syndrome (PCOS), and preeclampsia, can stimulate infertility. In the last decade, translational medicine has advanced, and scientists are focusing on infertility therapy with innovative attitudes. Recent investigations have suggested that stem cell treatments could be safe and effective. Stem cell therapy has established a novel method for treating women's infertility as part of a regeneration approach. The chief properties and potential of mesenchymal stem/stromal cells (MSCs) in the future of women's infertility should be considered by researchers. Due to their high abundance, great ability to self-renew, and high differentiation capacity, as well as less ethical concerns, MSC-based therapy has been found to be an effective alternative strategy to the previous methods for treating female infertility, such as intrauterine insemination, in vitro fertilization, medicines, and surgical procedures. These types of stem cells exert their beneficial role by releasing active mediators, promoting cell homing, and contributing to immune modulation. Here we first provide an overview of MSCs and their crucial roles in both biological and immunological processes. The next large chapter covers current preclinical and clinical studies on the application of MSCs to treat various female reproductive disorders. Finally, we deliberate on the extant challenges that hinder the application of MSCs in female infertility and suggest plausible measures to alleviate these impediments.
Collapse
Affiliation(s)
- Andrew Rizano
- Department of Medical Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Ria Margiana
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
- Indonesia General Academic Hospital, Depok, Indonesia.
- Ciptomangunkusumo General Academic Hospital, Jakarta, Indonesia.
| | - Supardi Supardi
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Pety Narulita
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| |
Collapse
|
7
|
Yang X, Tao Y, Jin O, Lai J, Yang X. MiR-17-5p promoter methylation regulated by DNA methyltransferase 3 beta (DNMT3B) expedites endometriosis via the Krüppel-like factor 12 (KLF12)/Wnt/β-catenin axis. J Reprod Immunol 2023; 158:103974. [PMID: 37290172 DOI: 10.1016/j.jri.2023.103974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Endometriosis (EM) is a common chronic disease in women with a high incidence, and aberrant DNA methylation and circulating endometrial cells (CECs) have been reported to be involved in the development of EM. However, the underlying mechanisms by which DNA methylation regulates EM progression have not been fully elucidated. In our study, we demonstrated that the DNA methyltransferase 3 beta (DNMT3B)-mediated DNA methylation modification enhanced EM progression through regulating miR-17-5p/KLF12/Wnt/β-catenin axis. In detail, expression levels of miR-17-5p were significantly downregulated in EM tissues and serums, and we found that DNMT3B elevated the methylation modification of the miR-17-5p promoter, thereby suppressing the expression of miR-17-5p. Subsequently, functional experiments showed that silencing DNMT3B inhibited cell viability and epithelial-mesenchymal transition (EMT) and promoted cell apoptosis in CECs, whereas this effect could be reversed by knocking down miR-17-5p. Besides, overexpression of miR-17-5p repressed EM progression in vivo. Moreover, we found that miR-17-5p could target negative regulation of Krüppel-like factor 12 (KLF12) and KLF12 overexpression could rescue the effect of over-miR-17-5p. Besides, miR-17-5p was able to suppress the Wnt/β-catenin signaling pathway, and blocked Wnt/β-catenin pathway by XAV-939 reversed the influence of knockdown of miR-17-5p. Overall, our data indicated that DNMT3B-mediated DNA methylation leading to miR-17-5p inhibition exacerbated the process of EM by targeting KLF12/Wnt/β-catenin axis, which provided a new perspective on targeted therapies for EM.
Collapse
Affiliation(s)
- Xiaomin Yang
- Department of Gynecology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang Province 314000, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215031, China.
| | - Yueping Tao
- Department of Gynecology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang Province 314000, China; Department of Gynecology, Zhejiang Chinese Medical University Affiliated Jiaxing TCM Hospital, Jiaxing, Zhejiang Province 314000, China; Department of Gynecology, Jiaxing University Affiliated TCM Hospital, Jiaxing, Zhejiang Province 314000, China.
| | - Ou Jin
- Department of Gynecology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang Province 314000, China; Department of Gynecology, Zhejiang Chinese Medical University Affiliated Jiaxing TCM Hospital, Jiaxing, Zhejiang Province 314000, China; Department of Gynecology, Jiaxing University Affiliated TCM Hospital, Jiaxing, Zhejiang Province 314000, China.
| | - Juan Lai
- Department of Gynecology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang Province 314000, China; Department of Gynecology, Zhejiang Chinese Medical University Affiliated Jiaxing TCM Hospital, Jiaxing, Zhejiang Province 314000, China; Department of Gynecology, Jiaxing University Affiliated TCM Hospital, Jiaxing, Zhejiang Province 314000, China.
| | - Xiaojun Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215031, China.
| |
Collapse
|
8
|
Tsuji S, Mukai T, Tsuchiya H, Iwatani C, Nakamura A, Nagamura‐Inoue T, Murakami T. Impact of administering umbilical cord-derived mesenchymal stem cells to cynomolgus monkeys with endometriosis. Reprod Med Biol 2023; 22:e12540. [PMID: 37693240 PMCID: PMC10491929 DOI: 10.1002/rmb2.12540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023] Open
Abstract
Purpose This study aimed to explore whether umbilical cord-derived mesenchymal stem cells (UC-MSCs) could be used as a therapeutic resource for endometriosis. Methods Of seven cynomolgus monkeys with endometriosis, five were administered UC-MSCs (intervention group) and two were administered saline (control group). First, intravenous US-MSC treatment was administered for three months. Second, weekly intravenous US-MSC administration combined with monthly intraperitoneal US-MSC administration was conducted for 3 months. Finally, weekly intraperitoneal US-MSC administration was conducted for 3 months. The dose of UC-MSCs was set to 2 × 106 cells/kg for all administration routes. Laparoscopic findings and serum cancer antigen 125 (CA125) levels were also evaluated. The Revised American Society for Reproductive Medicine classification was used for laparoscopic evaluation. Results Laparoscopic findings showed exacerbation of endometriosis after intraperitoneal UC-MSC administration, although no changes were observed in the control group. Intravenous UC-MSC administration decreased the level of CA125 in all monkeys; however, the difference was not significant. Intraperitoneal UC-MSC administration significantly exacerbated endometriosis compared with intravenous administration (p = 0.02). Conclusions This study revealed that intraperitoneal UC-MSC administration exacerbates endometriosis in a nonhuman primate model of the disease.
Collapse
Affiliation(s)
- Shunichiro Tsuji
- Department of Obstetrics and GynecologyShiga University of Medical ScienceOtsuJapan
| | - Takeo Mukai
- Department of PediatricsThe University of Tokyo HospitalBunkyo‐ku, TokyoJapan
| | - Hideaki Tsuchiya
- Research Center for Animal Life ScienceShiga University of Medical ScienceOtsuJapan
| | - Chizuru Iwatani
- Research Center for Animal Life ScienceShiga University of Medical ScienceOtsuJapan
| | - Akiko Nakamura
- Department of Obstetrics and GynecologyShiga University of Medical ScienceOtsuJapan
| | - Tokiko Nagamura‐Inoue
- Department of Cell Processing and Transfusion, The Institute of Medical ScienceThe University of TokyoMinato‐ku, TokyoJapan
| | - Takashi Murakami
- Department of Obstetrics and GynecologyShiga University of Medical ScienceOtsuJapan
| |
Collapse
|
9
|
Park Y, Han SJ. Interferon Signaling in the Endometrium and in Endometriosis. Biomolecules 2022; 12:biom12111554. [PMID: 36358904 PMCID: PMC9687697 DOI: 10.3390/biom12111554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/21/2022] [Indexed: 12/04/2022] Open
Abstract
Endometriosis is an estrogen-dependent inflammatory disease that develops in reproductive-aged women who experience pelvic pain and infertility. Even though endometriosis is not a new disease, its molecular etiology has not been clearly elucidated. Defects in the immune system might be one of the factors that promote endometriosis progression. For example, elevated levels of proinflammatory cytokines are associated with endometriosis. Interferon is one of the cytokines that is elevated in endometriotic tissues compared with normal endometrium. Therefore, high interferon levels play a crucial role in endometriosis progression. In addition to endometriosis, however, interferon has a critical role in endometrial function, particularly in the initiation and maintenance of pregnancy. Therefore, this review describes the double-edged sword of interferon signaling in normal endometrial function versus endometriosis progression and also discusses interferon targeting as a new nonhormonal therapy for endometriosis. This approach may increase the efficacy of endometriosis treatment and reduce the adverse effects associated with current hormonal therapy for this disease.
Collapse
Affiliation(s)
- Yuri Park
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sang Jun Han
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
10
|
The Complex Roles of Adipokines in Polycystic Ovary Syndrome and Endometriosis. Biomedicines 2022; 10:biomedicines10102503. [PMID: 36289764 PMCID: PMC9598769 DOI: 10.3390/biomedicines10102503] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) and endometriosis are frequent diseases of the female reproductive tract causing high morbidity as they can significantly affect fertility and quality of life. Adipokines are pleiotropic signaling molecules secreted by white or brown adipose tissues with a central role in energy metabolism. More recently, their involvement in PCOS and endometriosis has been demonstrated. In this review article, we provide an update on the role of adipokines in both diseases and summarize previous findings. We also address the results of multi-omics approaches in adipokine research to examine the role of single nucleotide polymorphisms (SNPs) in genes coding for adipokines and their receptors, the secretome of adipocytes and to identify epigenetic alterations of adipokine genes that might be conferred from mother to child. Finally, we address novel data on the role of brown adipose tissue (BAT), which seems to have notable effects on PCOS. For this review, original research articles on adipokine actions in PCOS and endometriosis are considered, which are listed in the PubMed database.
Collapse
|