1
|
Application of Personalized, Predictive, Preventative, and Participatory (P4) Medicine to Obstructive Sleep Apnea. A Roadmap for Improving Care? Ann Am Thorac Soc 2018; 13:1456-67. [PMID: 27387483 DOI: 10.1513/annalsats.201604-235ps] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dr. Leroy Hood promotes a paradigm to advance medical care that he calls P4 medicine. The four Ps are: personalized, predictive, preventative, and participatory. P4 medicine encourages a convergence of systems medicine, the digital revolution, and consumer-driven healthcare. Might P4 medicine be applicable to obstructive sleep apnea (OSA)? OSA should be personalized in that there are different structural and physiological pathways to disease. Obesity is a major risk factor. The link between obesity and OSA is likely to be fat deposits in the tongue compromising the upper airway. Clinical features at presentation also vary between patients. There are three distinct subgroups: (1) patients with a primary complaint of insomnia, (2) relatively asymptomatic patients with a high prevalence of cardiovascular comorbidities, and (3) excessively sleepy patients. Currently, there have been limited efforts to identify subgroups of patients on the basis of measures obtained by polysomnography. Yet, these diagnostic studies likely contain considerable predictive information. Likewise, there has currently been limited application of -omic approaches. Determining the relative role of obesity and OSA for particular consequences is challenging, because they both affect the same molecular pathways. There is evidence that the effects of OSA are modified by the level of obesity. These insights may lead to improvements in predicting outcomes to personalized therapies. The final P-participatory-is ideally suited to OSA, with technology to obtain extensive data remotely from continuous positive airway pressure machines. Providing adherence data directly to patients increases their use of continuous positive airway pressure. Thus, the concept of P4 medicine is very applicable to obstructive sleep apnea and can be the basis for future research efforts.
Collapse
|
2
|
Mukherjee S, Saxena R, Palmer LJ. The genetics of obstructive sleep apnoea. Respirology 2018; 23:18-27. [PMID: 29113020 PMCID: PMC7308164 DOI: 10.1111/resp.13212] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/11/2017] [Accepted: 09/29/2017] [Indexed: 12/19/2022]
Abstract
Obstructive sleep apnoea (OSA) is a common chronic disease and is associated with high social and economic costs. OSA is heritable, and there is evidence of both direct genetic contributions to OSA susceptibility and indirect contributions via 'intermediate' phenotypes such as obesity, craniofacial structure, neurological control of upper airway muscles and of sleep and circadian rhythm. Investigation of the genetics of OSA is an important research area and may lead to improved understanding of disease aetiology, pathogenesis, adverse health consequences and new preventive strategies and treatments. Genetic studies of OSA have lagged behind other chronic diseases; however recent gene discovery efforts have been successful in finding genetic loci contributing to OSA-associated intermediate phenotypes. Nevertheless, many of the seminal questions relating to the genetic epidemiology of OSA and associated factors remain unanswered. This paper reviews the current state of knowledge of the genetics of OSA, with a focus on genomic approaches to understanding sleep apnoea.
Collapse
Affiliation(s)
- Sutapa Mukherjee
- Sleep Health Service, Respiratory and Sleep Services, Southern Adelaide Local Health Network, Adelaide, South Australia, Australia
- Adelaide Institute for Sleep Health, Flinders University, Adelaide, South Australia, Australia
| | - Richa Saxena
- Center for Genomic Medicine and Department of Anesthesia, Pain, and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, USA
| | - Lyle J Palmer
- School of Public Health, University of Adelaide, North Terrace, Adelaide, South Australia, Australia
| |
Collapse
|
3
|
van der Spek A, Luik AI, Kocevska D, Liu C, Brouwer RWW, van Rooij JGJ, van den Hout MCGN, Kraaij R, Hofman A, Uitterlinden AG, van IJcken WFJ, Gottlieb DJ, Tiemeier H, van Duijn CM, Amin N. Exome-Wide Meta-Analysis Identifies Rare 3'-UTR Variant in ERCC1/CD3EAP Associated with Symptoms of Sleep Apnea. Front Genet 2017; 8:151. [PMID: 29093733 PMCID: PMC5651235 DOI: 10.3389/fgene.2017.00151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/28/2017] [Indexed: 12/30/2022] Open
Abstract
Obstructive sleep apnea (OSA) is a common sleep breathing disorder associated with an increased risk of cardiovascular and cerebrovascular diseases and mortality. Although OSA is fairly heritable (~40%), there have been only few studies looking into the genetics of OSA. In the present study, we aimed to identify genetic variants associated with symptoms of sleep apnea by performing a whole-exome sequence meta-analysis of symptoms of sleep apnea in 1,475 individuals of European descent. We identified 17 rare genetic variants with at least suggestive evidence of significance. Replication in an independent dataset confirmed the association of a rare genetic variant (rs2229918; minor allele frequency = 0.3%) with symptoms of sleep apnea (p-valuemeta = 6.98 × 10−9, βmeta = 0.99). Rs2229918 overlaps with the 3′ untranslated regions of ERCC1 and CD3EAP genes on chromosome 19q13. Both genes are expressed in tissues in the neck area, such as the tongue, muscles, cartilage and the trachea. Further, CD3EAP is localized in the nucleus and mitochondria and involved in the tumor necrosis factor-alpha/nuclear factor kappa B signaling pathway. Our results and biological functions of CD3EAP/ERCC1 genes suggest that the 19q13 locus is interesting for further OSA research.
Collapse
Affiliation(s)
| | - Annemarie I Luik
- Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Desana Kocevska
- Department of Child and Adolescent Psychiatry, Erasmus Medical Center, Rotterdam, Netherlands
| | - Chunyu Liu
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, MA, United States.,Population Sciences Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, United States.,Department of Biostatistics, School of Public Health, Boston University, Boston, MA, United States
| | | | - Jeroen G J van Rooij
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands.,Netherlands Consortium for Healthy Ageing, Rotterdam, Netherlands.,Department of Neurology, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Robert Kraaij
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands.,Netherlands Consortium for Healthy Ageing, Rotterdam, Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands.,Netherlands Consortium for Healthy Ageing, Rotterdam, Netherlands
| | | | - Daniel J Gottlieb
- VA Boston Healthcare System, Boston, MA, United States.,Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, United States.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - Henning Tiemeier
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands.,Department of Psychiatry, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Najaf Amin
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
4
|
The CC genotype of the delta-sarcoglycan gene polymorphism rs13170573 is associated with obstructive sleep apnea in the Chinese population. PLoS One 2014; 9:e114160. [PMID: 25474115 PMCID: PMC4256229 DOI: 10.1371/journal.pone.0114160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/04/2014] [Indexed: 02/05/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a highly heterogeneous sleep disorder, and increasing evidence suggests that genetic factors play a role in the etiology of OSA. Airway muscle dysfunction might promote pharyngeal collapsibility, mutations or single nucleotide polymorphisms (SNPs) in the delta-sarcoglycan (SCGD) gene associated with muscle dysfunction. To evaluate if SCGD gene SNPs are associated with OSA, 101 individuals without OSA and 97 OSA patients were recruited randomly. The genotype distributions of SNPs (rs157350, rs7715464, rs32076, rs13170573 and rs1835919) in case and control populations were evaluated. The GG, GC and CC genotypes of rs13170573 in control and OSA groups were 51.5% and 37.1%, 36.6% and 35.1%, and 11.9% and 27.8%, respectively. Significantly fewer OSA patients possessed the GG genotype and significantly more possessed the CC genotype compared with controls. Further multivariate logistic regression analysis showed that the CC genotype was an independent risk factor for OSA, with an odds ratio (OR) of 2.17 (95% confidence interval [CI]: 1.19-6.01). Other factors, such as age ≥ 50 years, male gender, body mass index (BMI) ≥ 25 kg/m(2), low-density lipoprotein cholesterol (LDL-C) level ≥ 3.33 mg/dL, smoking and hypertension, were also independent risk factors for OSA in our multivariate logistic regression model.
Collapse
|